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We consider a decision-situation in which the available information is given by a
data-set. The decision-maker can express preferences over data-set-action pairs.
In particular, he can compare different actions given the available information
contained in a data-set and also different data-sets w.r.t. to the evidence they give
in support of the choice of a given action. Three characteristics of a data-set can
be used to evaluate the evidence it provides with respect to the payoff of a given
action: the frequency of observations, the number of observations and the rele-
vance of observations to the action under consideration. We state axioms, which
ensure that the decision maker is indifferent among data-sets with identical fre-
quencies, but different lengths. We then provide an expected utility representation
of preferences, in which the beliefs of the decision maker about the outcome of
a given action can be expressed as similarity-weighted frequencies of observed
cases, as in BGSS (2005). The similarity weights re�ect the subjectively per-
ceived relevance of observations for the speci�c action.
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1 Introduction
Most of modern decision theory under uncertainty has been conducted in the framework of

Savage (1954), where acts, which associate states with outcomes, are primitives and decision

makers can order these acts. Given his well-known axioms these preferences can be represented

by a subjective expected utility functional, where the subjective probability distribution over

states as well as the utility evaluation of outcomes are endogenously derived.

More recently, Gilboa and Schmeidler (2001) developed an alternative framework, case-based

decision theory, in which actions and data-sets of cases are the primitive concepts. Preferences

are assumed to be about actions conditional on information given in the data-set. Gilboa and

Schmeidler (1997, 2001) as well as Gilboa, Schmeidler and Wakker (2002) provide axioms

which allow us to evaluate an action by the frequency-weighted sum of its case-by-case evalu-

ations.

Both approaches are behavioral, taking the observable preferences of the decision maker as a

primitive concept. They differ however in the objects which the decision maker is assumed to

rank. For Savage (1954) all the information necessary for the evaluation of an action is encoded

in the states. In the case-based approach, information comes in the form of a set of observations

(cases).

Gilboa and Schmeidler (2001) do not require the decision maker to condense the information

from a data-set of cases into states of the world. This is an attractive feature of their approach.

Their functional representation of preferences in the case-based context lacks however the intu-

itive appeal of the subjective expected utility approach of Savage (1954). In particular, it does

not provide a separation of utility and beliefs.

Most recently, Billot, Gilboa, Samet and Schmeidler (2005), henceforth BGSS (2005), showed

that one can derive probability distributions over outcomes as similarity-weighted frequencies

of the cases. Eichberger and Guerdjikova (2007), henceforth EG (2007), extend this idea to a

context of multiple-priors, hence allowing beliefs to also re�ect the con�dence of the decision

maker in the informational content of the data. These results assume, however, a mapping from

cases to probabilities over outcomes as primitive concepts and, therefore, lack a behavioral

foundation.

In the light of this literature, we suggest in this paper a behavioral approach which allows
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us to derive a representation of the subjective expected utility type in the case-based model.

We deduce the mapping from data-sets to probability distributions over outcomes, which were

exogenous concepts in BGSS (2005) and EG (2007), endogenously and apply it to an expected

utility evaluation of actions. The key difference between the approach suggested in this paper

and Gilboa and Schmeidler (2001) concerns the domain of preferences. Gilboa and Schmeidler

(2001) assume a family of preference orders over actions. In our approach the decision maker's

preferences order data-sets and actions. We derive an expected utility representation from

preferences over the product space of actions and data-sets, where expected utility is computed

with respect to frequency-weighted subjective probabilities as in BGSS (2005).

Our approach resembles the model of Gajdos, Hayashi, Tallon and Vergnaud (2007), henceforth

GHTV (2007), who consider a preference order de�ned on pairs of acts and sets of probability

distributions. Hence, in their model, a decision maker can compare an act across several dif-

ferent situations characterized by different information about the probability of the states of the

world. Similarly, we also postulate that the decision maker is able to evaluate the choice of a

given action for different sets of observations.

Both approaches lead to choices which can be observed in experiments as the two-urn Ellsberg

example (Ellsberg 1961) shows.

Consider the following hypothetical experiment. Let us suppose that you confront two urns containing red and black
balls from one of which a ball will be drawn at random. To "bet on RedI " will mean that you choose to draw from Urn
I; and that you will receive a prize (say, $100) if you draw a red ball ("if RedI occurs") and a smaller amount (say $0)
if you draw a black ("if not-RedI occurs").
You have the following information. Urn I contains 100 red and black balls, but in a ratio entirely unknown to you; there
may be from 0 to 100 red balls. In Urn II, you con�rm that there are exactly 50 red and 50 black balls. An observer
- who, let us say, is ignorant of the state of your information about the urns - sets out to measure your subjective
probabilities by interrogating you as to your preferences in the following pairs of gambles:
1. "Which do you prefer to bet on, RedI or BlackI ; or are you indifferent?" That is, drawing a ball from Urn I, on
which "event" do you prefer the $100 stake, red or black: or do you care?
2. "Which would you prefer to bet on, RedII or BlackII?"
3. "Which do you prefer to bet on, RedI or RedII?"
4. "Which do you prefer to bet on, BlackI or BlackII?"
Let us suppose that in both the �rst and the second case, you are indifferent (the typical response). Judging from a large
number of responses, under absolutely nonexperimental conditions, your answer to the last two questions are likely to
fall into one of three groups. You may still be indifferent within each pair of options. (If so, you may sit back now
and watch for awhile.) But if you are in the majority, you will report that you prefer to bet on RedII rather than RedI ,
and on BlackII rather than BlackI . The preferences of a small minority run the other way, preferring bets on RedI to
RedII , and BlackI to BlackII . (Ellsberg 1961, pp. 650-651).

Ellsberg's example shows that decision makers do rank acts within the information context of a
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given urn (Gambles 1 and 2) but may also have preferences over differing information regarding

the two urns for a given act (Gambles 3 and 4).

Ellsberg provides differing information about the urns directly by their description. In principle,

however, one can imagine the information available to the decision maker to be structured in

several different ways. It is exactly the structure of the available information that distinguishes

our approach from the one taken in GHTV (2007). In our model, the information arrives in form

of data. This allows us to capture situations in which the decision maker has non-aggregated

statistical data and tries to make predictions based on this information. In contrast, the approach

chosen by GHTV (2007) could be seen as an intermediate stage in this process, at which, e.g., a

classical statistician has used the data to generate a set of probabilistic predictions and conveys

them to the decision maker.

We illustrate our approach by the following example. Consider a decision maker who faces a

bet on a white ball being drawn from an urn with an unknown number of black and white balls.

In this situation data-sets could consist of sample draws with replacements. A �rst criterion

for the evaluation of these data-sets may be the frequency of observations. When evaluating the

action "betting on white", it seems reasonable if the decision maker would prefer a data-set with

ten sample draws of which eight were white over a data-set with ten draws of which only �ve

were white.

A second characteristic which may be relevant for the evaluation of a data-set is the number of

observations, which may serve as a proxy for its informativeness or accuracy. In particular, for

a given frequency of observations, a longer data-set allows the decision maker to exclude more

probability distributions as potential descriptions of the data-generating process. If both the

frequencies and the lengths of two data-sets are distinct, the decision maker faces a trade-off:

e.g., a data-set with eight out of ten white draws may be preferred to a data-set with just two

draws both of which were white, thus indicating that the informativeness of the former is valued

higher than the favorable frequency of outcomes in the latter.

Not all decision problems have the simple structure of an urn experiment. In general, not all

observations in a data-set will be equally relevant for the evaluation of an action. Differently

from the Savage framework, the case-based approach allows us to make this distinction by

assigning different weights to information with different degree of relevance, thus capturing the

idea that the similarity (or the perceived relevance) of cases may also matter for preferences
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over data-sets. For instance, a physician, who is trying to evaluate the performance of a speci�c

treatment, would consider a data-set containing observations of similar treatments resulting in

favorable outcomes to be more valuable than a set of observations of very different treatments

with equally favorable outcomes.

The aim of this paper, is to analyze such preferences over action-data-set pairs and identify

conditions under which the representation of beliefs suggested in BGSS (2005) obtains. In

particular, we provide conditions under which the Concatenation axiom of BGSS (2005) holds

and, hence, the decision maker is indifferent between data-sets with equal frequencies, but

distinct length4. This appears reasonable if the database is relatively large for the decision

problem under consideration. Indeed, BGSS (2005) note that this approach

"... might be unreasonable when the entire database is very small. Speci�cally, if there
is only one observation, [....] However, for large databases it may be acceptable to assign
zero probability to a state that has never been observed." (BGSS (2005), p. 1129)

Hence, differently from GHTV (2007), in this paper we do not focus on the attitude of the

decision maker towards information precision5. Instead, we concentrate on the frequencies of

observations and their relevance for the action under consideration and highlight the role of

these two factors for the evaluation of data-sets.

1.1 A short overview of the results
We provide axioms on the preference relation over data-setsD and actions a which characterize

the following representation:

V (a;D) =
X
r2R

v (r)

P
c2C fD (c) s (a; ac) p̂

c
a (r)P

c2C fD (c) s (a; ac)
(1)

for all probability distributions over outcomes p̂ca from a compact and convex sets of probability

distributions over outcomes P̂ ca . Here v (r) is the utility of outcome r and fD (c) denotes the

frequency of case c in the data-set D. Moreover, s (a; ac) is interpreted as the relevance, or

similarity, of case c containing action ac for the evaluation of action a, and p̂ca (r) denotes the

probability of outcome r in case action a is chosen and the only evidence available is a data-set

4 This gives rise to a model of learning which is close in spirit to the frequentist approach and very different from
Bayesian learning, as axiomatized by Easley and Rustichini (1999). In particular, observing a data-set in which
an action pays the highest possible outcome with frequency 1 would lead the decision maker in our model to
assign a probability of 1 to this outcome, regardless of the number of observations, making his behavior inconsistent
with the one of a Bayesian.
5 Note, however, that the structure of our model allows for this generalization. We analyze this question in
a companion paper, Eichberger and Guerdjikova (2008).
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consisting of the single case c.

The representation in Equation (1) can be interpreted in the following way:

(i) For each piece of evidence c and for each action a, the decision maker entertains a probability

distribution over outcomes p̂ca; i.e., a prediction about the outcome which would result from the

choice of a, given evidence c. If the information consists of a single case c, he compares actions

according to their expected utility with respect to these predictions and a utility function over

outcomes, v (r).

(ii) For more complex data-sets, two additional characteristics of the available information will

in�uence preferences. First, if the data-set consists only of cases containing the same action,

say a0, then all cases will be considered equally relevant for the prediction at hand. Hence, the

decision maker will weigh the prediction p̂ca associated with each of the cases by the frequency

fD (c) with which the case occurs in the data-set. In particular, if the data-set consists only of

cases containing action a, it would represent a controlled statistical experiment with respect to

the evaluation of a. In this case, the frequency of outcomes in the data-set could serve as a �rst

estimate of the probabilities with which the outcomes occur. In contrast, when the observed

action is distinct from a, the probability distribution p̂(a
0;r)

a need not predict that outcome r will

obtain with probability 1. Instead, p̂(a
0;r)

a will capture the subjectively perceived correlation

between outcomes of the distinct actions a and a0.

(iii) If the data-set contains heterogenous cases, i.e. cases containing different actions, then

different cases will have different degrees of relevance for the evaluation of a. Hence, the

frequencies of cases have to be modi�ed by the similarity weights s (a; ac). Note that the

similarity weights depend only on the action chosen in case c and not on its outcome. We

argue below that this is an attractive feature of the representation, since it excludes predictions

biased towards favorable or unfavorable outcomes.

We can rewrite Equation (1) as

V (a;D) =
X
r2R

u (r)ha (D; r)

with

ha (D; r) =:

P
c2C fD (c) s (a; ac) p̂

c
a (r)P

c2C fD (c) s (a; ac)
(2)

denoting the probability weight assigned to outcome r conditional on the information contained

in D. Hence, our approach provides a behavioral foundation for the representation of BGSS

(2005). While BGSS (2005) take the function ha (D) as a primitive concept and provide condi-

6



tions for representing it as similarity-weighted frequencies of outcomes as in Equation (2), we

derive the beliefs of the decision maker explicitly from observed preferences.

The rest of the paper is organized as follows. In the next section, we present the preference

relation on action-data-set-pairs. Section 3 presents our axioms. Section 4 contains our main

representation result for preferences over action-data-set-pairs. Section 5 concludes. All proofs

are collected in the Appendix.

2 Preferences on actions and data-sets
Consider a �nite set of actions A with a representative element a. It is known that the payoffs

of the actions r come from a �nite set R with at least three distinct elements. We deviate from

the standard frameworks used in the literature to model decision-making under uncertainty.

In particular, we assume that the decision maker knows neither the probability distribution of

payoffs associated with a speci�c action a (as in the von-Neumann-Morgenstern model), nor the

mapping which describes the state-contingent outcomes of an action as in Savage's framework.

In contrast, all the information available to the decision maker is in form of observations. Each

observation, i.e. case, consists of an action and an outcome generated from this action. We

write

c = (a; r) , a 2 A, r 2 R
for a speci�c case and C = A�R for the set of all possible cases. A set of T such observations
is referred to as a data-set of length T (T � 1):

D = (c1:::cT ) = ((a1; r1) ; ::: (aT ; rT )) .

The set of all conceivable data-sets is denoted by D. The set of data-sets of length T is denoted

by DT . We will write jDj for the length of D. The frequency of cases in a data-set D 2 DT is
given by

fD = (fD (c))c2C =

�
jft j (at; rt) = cgj

T

�
c2C

:

�r stands for the Dirac measure assigning a mass 1 to r 2 R.

Remark 2.1 The proper speci�cation of cases is important. Depending on how one de�nes

the cases, new data-sets may provide more or less precise additional evidence for these cases.

For example, two samples of balls drawn from the same urn at different dates could be seen as

distinct cases, because they were drawn at different times, or as additional observations of the
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same cases if the difference in timing is viewed as immaterial.

We assume that a decision maker evaluates decision situations consisting of actions a and as-

sociated information given by a data-set D: Hence, we assume a preference order % de�ned on
the set of actions and data-sets A � D. The preference order (a;D) % (a0;D0) means that the

decision maker prefers action a in a situation where the evidence is given by the data-setD over

action a0 in a situation described by the data-set D0.

The following two examples provide an illustration of our framework.

Example 2.1 Urn example

Consider a decision maker who has to choose between bets on the color of a ball drawn from an

urn with 100 balls which are either black or white. Hence, we can denote the set of actions by

A = fB;Wg, whereB denotes the bet on a black ball andW the bet on a white ball. Assuming

that a bet wins 1, if the respective ball is drawn, and yields 0 otherwise, we have R = f0; 1g:

Suppose that bets and outcomes of past draws are known. Hence, the available information

consists of previous cases c = (a; r) 2 fB;Wg � f0; 1g: After T rounds, a set of past obser-

vations D = (c1; :::; cT ) is available and de�nes the situation in which the choice of a bet takes

place.

If the decision maker can decide when and on which color to place a bet, then action-data-set

pairs must be compared, e.g., (W;D) with (B;D0): The relation (W;D) % (B;D0) expresses a

preference to bet onW if the data-set is D = (c1; :::; cT ) compared to a bet on B based on the

data D0 = (c01; :::; c
0
T 0): In this example, past information is given by independent draws with

replacement from a given urn and, therefore, the order of the cases does not matter. Hence,

one can summarize the information of these data-sets by their frequencies fD and fD0 and the

number of observations T = jDj and T 0 = jD0j:

From example 2.1 it is clear that a preference (W;D) % (W;D0) does not mean that the pre-

ferred data-set D could be chosen given the action to bet on W: The relation rather indicates

that, when betting on W , the decision maker prefers the information contained in data-set D

over the information in D0. Or, choosing bet W in a situation with information D is ranked

higher than choosing W in a situation D0: Considering preferences over action-situation pairs
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allows one to study preferences over information without implying that information itself is

necessarily an object of choice.

Example 2.1 corresponds to a controlled decision situation as one �nds it in organized gambles

or statistical experiments. Most real-world decisions take place, however, in far less structured

environments. The following example is taken from the context of health economics.

Example 2.2 Hospitalization (O'Hara & Luce 2003, pp.62-4)

The decision concerns the cost-effectiveness of a new drug relative to the standard treatment.

Cost-effectiveness is measured by the number of days a patient has to stay in hospital.

Data is available from a clinical trial where two treatments with 100 patients each were recorded,

jDj = 200. A case c is described by the action a whether the patient got the new drug ad or not

an, A = fad; ang, and the outcome r, i.e., the number of days the patient spent in hospital. For

the group of patients receiving the standard treatment (an) a total of 25 days in hospital were

observed, while for the group receiving the new drug (ad) only 5 days were recorded. Based

on this data-set of cases, the decision may be made to have the new drug replace the standard

treatment.

The data base of 200 patients is, however, quite small. Suppose there are also data from a larger

study of a similar drug at another hospital in which the average number of days in hospital was

0.21. This data-set contains cases with the action a = a0d and, as before, as outcomes r the days

the patients spent in hospital. This may cast doubts on the reliability of the observation of an

average time in hospital of 0.05 days for the new drug. Whether one feels persuaded by the new

or by the old evidence depends to a large extent on how similar one judges the two situations

re�ected in the data-sets.

The description of Example 2.2 follows closely the wording of O'Hara & Luce (2003). It is clear

from this description that the decision maker is concerned about the lack of data and considers

explicitly data which seem similar but are not fully adequate for the choice under consideration.

In particular, the decision maker shows a clear preference for "more adequate data".

As these examples illustrate, information contained in data-sets may be quite diverse. Data can

be very crisp, as we usually �nd them in controlled experiments, or, very opaque, if one has

to rely on information from similar cases. The representation which we will axiomatize below
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will allow us to deal with decision problems of the type described in Examples 2.1 and 2.2.

3 Axioms
We now impose conditions on the preference relation % which guarantee that the utility of
action a given the informational content of D can be written as:

V (a;D) =

P
r2R v (r)

P
c2C fD (c) s (a; ac) p̂

c
a (r)P

c2C fD (c) s (a; ac)
. (3)

We make extensive use of the following notation: Da0 denotes the set of data-sets containing

only cases in which a speci�c action a0 2 A was chosen. Formally,

Da0 = fD 2 D jfD (c) > 0 only if c = (a0; r0) for some r0 2 Rg .

We also use DTa0 to denote the restriction of Da0 to data-sets of length T .
Axiom 1 (Complete Order)

% on A� D is complete and transitive.
Axiom 2 (Invariance)

For each a 2 A and for any two D and D0 2 DT such that there exists a one-to-one mapping
� : f1:::Tg ! f1:::Tg, with the property:

D = (ct)
T
t=1 and D

0 =
�
c�(t)

�T
t=1

(a;D) � (a;D0) .

Axiom 2 states that the order in which information arrives does not in�uence the evidence that

D gives in favor of a given action. This axiom implicitly assumes that the outcome of an action

does not depend on the order or on the time period in which different actions are chosen. Also,

it implies that each data-set is uniquely characterized by its length and frequency. Hence, from

now on, we will think of the elements of D as multisets and write D = D0 whenever the two

multisets are equal, i.e. whenever D and D0 are equivalent up to a permutation.

We now de�ne the concatenation operator:

De�nition 3.1 Concatenation
Let D and D0 2 D be given by

D = f(a1; r1) ::: (aT ; rT )g
D0 = f(a01; r01) ::: (a0T 0 ; r0T 0)g

The data-set
D �D0 = f(a1; r1) ::: (aT ; rT ) ; (a01; r01) ::: (a0T 0 ; r0T 0)g

is called the concatenation of D and D0.
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We write Dk := D �D � ::: �D| {z }
k-times

for the kth concatenation of the set D with itself.

Axiom 3 (Continuity + Concatenation)
For any a 2 A, (a;D) � (a;D00) implies

(a;D) � (a;D �D00) � (a;D00) .
Furthermore, for any a 2 A, if D0 satis�es

(a;D) � (a;D0) � (a;D00) ,
then there are k, l m and n 2 Nn f0g with k

l
> m

n
, such that�

a;Dk � (D00)
l
�
� (a;D0) �

�
a;Dm � (D00)

n� .
To understand the axiom, note that a preference for (a;D) over (a;D00) indicates that D is

considered to contain more favorable evidence for a thanD00. Then, the concatenation ofD and

D00 contains both favorable and less favorable evidence for a. Hence, it is natural to evaluate this

set to be worse than D and better than D00. In contrast, suppose that D0 is evaluated in between

D andD00. Then, a suf�ciently large number of replicas ofD (k large relative to l) can outweigh

the negative evidence contained in D00 and, thus make the data-set Dk � (D00)l better than D0.

Since we do not allow l to become 0, the negative evidence in D00 will never be completely

eliminated, but its weight in the evaluation of the data-set Dk � (D00)l can be made arbitrarily

small, so that for any data-set (a;D0) � (a;D) the preference
�
a;Dk � (D00)l

�
� (a;D0) can

be obtained. The argument for (a;D0) � (a;Dm � (D00)n) is analogous.

The second part of Axiom 3 represents a standard continuity assumption de�ned on the set D.

Our next lemma shows that the �rst part of the axiom is closely related to the Concatenation

axiom of BGSS (2005). In particular, Axiom 3 implies that for every k 2 Z= f0g, the data-
sets D and Dk are considered indifferent, which, in our representation implies that they are

associated with identical probability distributions over outcomes. We state this as a lemma:

Lemma 3.1 Under Axioms 1, 2 and 3, for all a 2 A, all D 2 D and all k 2 Nn f0g,�
a;Dk

�
� (a;D) .

Hence, the beliefs associated with a data-set depend only on the frequency with which cases

appear in the data-set, but not on the length of the data-set. A decision maker, who, e.g. values

data-sets with a larger number of observations, because he considers them to be more reliable,

will in general violate Axiom 3. In particular, when comparing the data-sets D and D �D00, he

will also take into account that D � D00 is longer, and, hence, (potentially) more reliable than
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D. Hence, it is possible that (a;D �D00) � (a;D) obtains despite the fact that the evidence

contained in D00 is considered less favorable for a than the one contained in D. If one thinks

of longer data-sets as more reliable, i.e., more precise in the sense that they allow the decision

maker to exclude more probability distributions as plausible descriptions of the data generating

process, the fact that the decision maker ignores the reliability of the data-set means that he

is insensitive to the degree of information precision. Under Axioms 2 and 3, it is possible to

identify a data-set D with the frequency of cases fD it generates.
Axiom 4 (Independence for controlled statistical experiments)

For all a0, a00 2 A, all D0
1, D0

2 2 Da0 and D00
1 , D00

2 2 Da00 and for any natural numbers k, l, m,
n 2 N such that

���(D0
1)
k
��� = ���(D00

1)
l
��� and j(D0

2)
mj = j(D00

2)
nj,

(a0;D0
1)
�
(�) (a

00;D00
1) (4)

(a0;D0
2)
%
(-) (a

00;D00
2)

implies: �
a0; (D0

1)
k � (D0

2)
m
� �
(�)

�
a00; (D00

1)
l � (D00

2)
n
�

(5)

and if (a0;D0
2) � (a00;D00

2), the two statements, (4) and (5) are equivalent.

Consider �rst the case of a0 = a00 = a. The axiom then claims that if the evidence in data-setD0
1

is considered more favorable for a than the evidence in D00
1 and, similarly, the evidence in D0

2

is considered at least as favorable as the one in D00
2 , then the combination of D0

1 and D0
2 should

be thought at least as favorable as the combination of the evidence contained in D00
1 and D00

2 .

Furthermore, if the evidence in D0
2 and D00

2 is regarded as equivalent, the preferences between

(D0
1)
k � (D0

2)
m and (D00

1)
l � (D00

2)
n should be determined only by the comparison between D0

1

and D00
1 .

The axiom extends this intuition to all actions a0 and a00 as long as each action is evaluated in

situations in which only cases containing the choice of this particular action are observed. If

action a0 is preferred to action a00 in two situations: when the evidence for a0 is D0
1, while the

evidence for a00 is D00
1 and when the evidence for a0 is D0

2, while the evidence for a00 is D00
2 , then

combining the evidence for a0 to (D0
1)
k � (D0

2)
m should render a0 more preferred than a00 under

the combined evidence (D00
1)
l � (D00

2)
n.

It is important to note the restrictions of the axiom. First, it is necessary to control for the length

of the data-sets when applying the concatenation operator. Second, it is important that the cases

12



inD0
1 andD0

2 contain only action a0, while the cases inD00
1 andD00

2 contain only action a00. This

ensures that all cases in (D0
1)
k � (D0

2)
m will be equally relevant for the evaluation of a0, and

similarly, for (D00
1)
l � (D00

2)
n. These two restrictions in the statement of the axiom imply that the

evidence contained inD0
1 should receive the same weight in (D0

1)
k �(D0

2)
m as does the evidence

in D00
1 in the evaluation of (D00

1)
l � (D00

2)
n, thus motivating the independence property.

The independence property plays a crucial role in the representation, allowing us to separate

utility and beliefs.
Axiom 5 (Most favorable and least favorable evidence)

For all a 2 A, there exist �ra and ra 2 R such that
(a; (a; �ra)) � (a; (a; ra))

and for all D 2 D,
(a; (a; �ra)) % (a;D) % (a; (a; ra)) .

First note that according to Lemma 3.1, the number of repetitions of cases in the data-set is

irrelevant. Hence, for all a 2 A,

(a; (a; �ra)) � (a; (a; �ra))k

for any k � 1, and similarly for (a; (a; ra)).
Axiom 5 then asserts that the (repeated) observation of a resulting in the "worst" outcome w.r.t.

this action would represent the least favorable evidence and the (repeated) observation of a

leading to the "best" outcome w.r.t. a would constitute the most favorable evidence in support

of a.

Axioms 1-5 allow us to establish an important intermediate result: preferences on fag � Da
can be represented by Va (D) =

P
r2R va (r) fD (a; r) for a von-Neumann-Morgenstern utility

function va (r). Axiom 5 further states that for an arbitrary data-set D (not necessarily one in

Da), (a;D) is ranked between (a; (a; �ra)) and (a; (a; ra)). This means that we can approximate

the utility of (a;D) by a sequence of data-sets in Da and in this way extend the function Va (D)

to all D 2 D. In particular, % on fag � D can be represented as:

Va (D) =
X
r2R

va (r)h (r) , h (r) 2 Ha (D)

where Ha (D) is the set of frequencies over outcomes of those data-sets D0 in Da which are

considered indifferent to D when evaluating action a, i.e. (a;D) � (a;D0). Furthermore, we

13



can show thatHa (D) can be written as:

Ha (D) =

�P
c2C fD (c) sa (c) p̂

c
a (r)P

c2C fD (c) sa (c)
j p̂ca 2 P̂ ca

�
for some uniquely determined sets P̂ ca of probability distributions over outcomes and some

positive and unique up to a multiplication by a positive constant similarity values sa (c)6.

We now show how the relative weight assigned to a speci�c subset of observations can be

determined. Consider two data-sets D 2 DTa0 and D0 2 DTa00 such that (a;D) � (a;D0).

To determine the relative weight assigned to D in the concatenation D � D0, we will use the

following construction: suppose that for some T̂ , there exist data-sets ~D1 and ~D2 2 DT̂a such
that �

a; ~D1

�
� (a;D) (6)�

a; ~D2

�
� (a;D0) .

Together with Axiom 3, (6) implies:�
a; ~D1

�
� (a;D) � (a;D �D0) � (a;D0) �

�
a; ~D2

�
.

Hence, also by Axiom 3, we can approximate the utility of (a;D �D0) arbitrarily closely by

a sequence of data-sets of the form ~Dk
1 � ~Dn

2 , k, n 2 N. Let � denote the limit of the ratio k
n

for this sequence. By Axiom 4, all cases contained in ~D1 and ~D2 are weighted equally in the

concatenation ~Dk
1 � ~Dn

2 . Furthermore, for the evaluation of a, ~D1 and ~D2 are equivalent to D

and D0, respectively. It follows that the weight assigned to D relative to D0 is given by �.

This construction shows how the similarity coef�cients can be derived from preferences7. It

relies, however, on the assumption that data-sets ~D1 and ~D2 satisfying condition (6) can be

found. Note, however, that by Axioms 3 and 4 we can express � as:

� = lim inf

�
k

n
j for all T̂ and all D1 and D2 2 DT̂a such that (a;D1) � (a;D)
and (a;D2) � (a;D0),

�
a;Dk

1 �Dn
2

�
� (a;D �D0)

�
, (7)

or, equivalently, as

� = lim sup

�
k

n
j for all T̂ and all D1 and D2 2 DT̂a such that (a;D) � (a;D1)
and (a;D0) � (a;D2), (a;D �D0) �

�
a;Dk

1 �Dn
2

� �
. (8)

This provides us with an alternative method to derive the coef�icient �, which does not rely on

the assumption that data-sets satisfying condition (6) exist.

We use this property of the similarity coef�cients to formulate our next axiom. We require that
6 This result follows from Theorem 1 proved in EG (2007).
7 In particular, setting D = (a0; r0), D0 = (a00; r00) we obtain sa(a0;r0)

sa(a00;r00)
= �, which identi�es the similarity

weights up to a multiplication by a positive constant.
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replacing the sequences of outcomes of actions a0 and a00 in the data-setsD andD0 with different

sequences of outcomes of the same length should leave the sets on the r.h.s. of expressions

(7) and (8), and, therefore, also the coef�cient � unchanged. In this way, we ensure that the

similarity weights sa (c) depend only on the action chosen in case c, but not on the observed

payoff.
Axiom 6 (Outcome Independence)

LetD, D̂ 2 DTa0 andD0, D̂0 2 DTa00 . For all a 2 A, if (a;D) % (a;D0) and
�
a; D̂

�
%
(-)

�
a; D̂0

�
,

then for any k and n, and any T̂ 2 Nn f0g,�
a;Dk

1 �Dn
2

�
� (a;D �D0) for all D1 and D2 2 DT̂a

such that (a;D1) � (a;D) and (a;D2) � (a;D0)
holds if and only if�

a; D̂k
1 � D̂n

2

� �
(�)

�
a; D̂ � D̂0

�
for all D̂1 and D̂2 2 DT̂a

such that
�
a; D̂1

� �
(�)

�
a; D̂

�
and

�
a; D̂2

� �
(�)

�
a; D̂0

�
and �

a;Dk
1 �Dn

2

�
� (a;D �D0) for all D1 and D2 2 DT̂a

such that (a;D1) � (a;D) and (a;D2) � (a;D0)
holds if and only if�

a; D̂k
1 � D̂n

2

� �
(�)

�
a; D̂ � D̂0

�
for all D̂1 and D̂2 2 DT̂a

such that
�
a; D̂1

� �
(�)

�
a; D̂

�
and

�
a; D̂2

� �
(�)

�
a; D̂0

�
.

In the statement of Axiom 6, the combination of evidence from observations of distinct alter-

natives is a key feature. The axiom (combined with the preceding argument) implies that the

weight on the evidence obtained from the observation of a given action should not depend on

the outcome of this action. Hence, this axiom precludes the case of a decision maker who thinks

that, say, good outcomes are more relevant for the evaluation of a than bad outcomes. This, of

course, does not mean that the evidence from two observations with different outcomes (a0; r1)

and (a0; r2) is considered to be equally favorable for the evaluation of a, merely that the relative

weight this evidence is given when combined with the evidence from a data-set of potentially

different observations, D, is identical. Hence, the similarity function sa (c) derived above can

be written as sa (ac), with ac denoting the action chosen in case c.
Axiom 7 (Action Independence)

For all a, a0 2 A and all r 2 R,
(a; (a; r)) � (a0; (a0; r)) .
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In combination with Axiom 5, Axiom 7 implies that the best outcome �ra and the worst outcome,

ra are the same for all actions in A. Furthermore, observing an outcome r as a result of action a

gives the same evidence in favor (or against) a as does observing the same outcome r as a result

of action a0 for action a0. Hence, the decision maker is able to order the outcomes w.r.t. their

desirability independently of the action from which they result. This allows us to construct a

utility function over outcomes v (r), which is independent of the action a, thus leading to the

desired representation.

4 The Representation
Axioms 1 � 7 imply the desired representation:

Theorem 4.1 The preference relation % satis�es Axioms 1 � 7, if and only if there exists a
probability correspondence P̂ : A � C � �jRj�1, a family of similarity functions sa : A !
R+n f0g for a 2 A, and a utility function over outcomes v : R! R, such that% on A�D can
be represented by:

V (a;D) =

P
r2R v (r)

P
c2C p̂

c
a (r) sa (ac) fD (c)P

c2C sa (ac) fD (c)
.

Here, ac denotes the action chosen in case c, fD (c) is the frequency with which case c is
observed in D and p̂ca is any probability distribution over outcomes in the image of P̂ (a; c).
The utility function v is unique up to an af�ne-linear transformation, the similarity functions
sa are unique up to a multiplication by a positive number and there is a unique probability
correspondence P̂ such that for all r 2 R, P̂ (a; (a0; r)) is maximal with respect to set inclusion
when a0 6= a and satis�es: P̂ (a; (a; r)) = f�rg.

It is easily checked that this representation has the following properties:

1. When evaluating a data-set in Da0 with respect to a speci�c action a, the evidence contained

in each of the cases is weighted equally.

2. For controlled statistical experiments w.r.t. the action under consideration, a, the probability

distribution over outcomes coincides with the observed frequency of outcomes. However,

when the observed action is distinct from a, the probability distribution over outcomes in

general depends on both the action and the outcome in the observed case c. Moreover, in this

case, the beliefs of the decision maker cannot be uniquely identi�ed and are instead given by

a set of probability distributions P̂ ca .

3. For data-sets containing observations of different actions, the weight put on the evidence
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contained in a speci�c case in general depends both on the action under consideration and

on the action chosen in this case, but not on the observed outcome.

We now discuss these three properties in turn. Property 1 applies to the case of controlled sta-

tistical experiments, in which an action (potentially different from the one being evaluated, a),

say a0 is observed in each period. Since the choice of action remains unchanged, the relevance

of each case in the data-set for the evaluation of a will be identical, i.e. the weight given to

the evidence derived from each of the cases in the data-set should be the same. This requires

that the decision maker does not differentiate between positive and negative outcomes when

deciding on the relevance of a speci�c case. We think that this is a desirable property of the

representation. It excludes decision makers, who discard, say all negative evidence and base

their evaluation of a given action only on the "favorable" cases in the data-set.

Property 2 states that the predictions based only on observations of action a have to coincide

with the observed frequency of outcomes. This seems natural, given that Axiom 3 implies

that the decision maker is not sensitive to the degree of precision of the information � he

does not differentiate between longer and shorter data-sets when evaluating the evidence. Our

representation allows, however, for different probabilistic predictions when a speci�c outcome

results from the choice of a different action, a0. For instance, observing that a speci�c drug

a0d was successful (resulted in outcome �r) in the treatment of a speci�c disease might lead to

the prediction that outcome �r will occur with probability of 1 when using this drug. This need

not mean that using a similar, drug ad, which, e.g. has an additional component, would also

be successful. Instead, the physician might know that the additional component suppresses the

effect of the active component of drug a0d. Thus, a probability less than 1 would be assigned to

�r when evaluating action ad if the only case observed in the data-set is (a0d; �r).

Property 3 applies to heterogenous data-sets, allowing the evidence contained in different cases

to receive different weights depending on the relevance of these cases with respect to a. For

instance, cases in which a was chosen will be presumably the most relevant ones. To avoid

predictions biased in favor of good or bad outcomes, we require the relevance of a case to be

independent of its outcome.

We now explain why it is impossible to uniquely identify the beliefs of the decision maker

when the data-set contains observations of actions different from a. In the Savage approach,

the possibility to generate betting acts for each state of the world is what allows the unique
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elicitation of subjective beliefs. In the case-based framework, states are not de�ned a priori,

the cases serving as primitives of the model. In our model, the set of cases is restricted: the

decision maker does not observe the outcomes of two distinct actions simultaneously8. Hence,

regardless of the number of observations, the joint probability distribution over outcomes of a

and a0 is never observed. E.g., in example 2.2, each patient can be subject to only one of the

two possible treatments. In the Ellsberg experiment, it might be that the decision maker learns

only the color of the ball drawn from the urn he actually placed a bet on.

To elicit beliefs according to the Savage approach, we must de�ne the relevant state-space, AjRj,

and construct an extended set of acts, A : AjRj ! R. Preferences are de�ned on A and include
comparisons among all betting acts on AjRj and, in particular, among bets on the joint outcomes

of a and a0. This is a necessary condition to identify p̂(a
0;r0)

a . In our framework, the impossibility

to bet on and observe the simultaneous performance of two actions precludes this extension

from A to A. Hence, the set of actions is not suf�ciently rich to uniquely determine p̂(a
0;r0)

a .

Therefore, instead of following Savage's approach, we �rst derive a von-Neumann-Morgenstern

representation of preferences on fag � Da, where the frequencies of observations serve as
probability weights. We then calibrate the utility of (a;D) for arbitrary setsD by using data-sets

inDa. The frequency of a data-setD0 2 Da such that (a;D) � (a;D0) can be used as probability

distribution over outcomes in the evaluation of D. However, for each D 2 D, there will be (in
general) many such equivalents inDa, and hence, many probability distributions consistent with

the expressed preferences. Speci�cally, for D = (a0; r0), the set of such equivalents identi�es

the set of probability distributions P̂ (a
0;r0)

a used in the representation.

It is important to note the different reasons for considering multiple priors in EG (2007) as

compared to the current paper. There, the motivation for working with sets of probability distri-

butions is that the decision maker considers the information contained in a longer data-set to be

more precise. In controlled statistical experiments, the set of priors shrinks as additional data

con�rm the existing evidence.

In contrast, in the current paper, we consider a decision maker whose preferences do not depend

on the length of the data-set. After observing a controlled statistical experiment, he entertains

a single probability distribution over outcomes, which coincides with the observed frequencies.

8 This is true for many real-life situations such as the choice of an investment project, in which only the outcome
of the implemented project is observed, or the choice of a medical treatment, where it is impossible to observe
the outcome of a treatment that has not been applied, etc.
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However, the decision maker faces persistent uncertainty with respect to the joint probability

distribution of distinct actions. As a result, he might either, as a Savage subjective expected

utility maximizer, reduce this uncertainty to a single probability distribution, or, he might en-

tertain a set of probability distributions, all of which, however, imply the same expected utility

of the action under consideration. The structure of the model does not allow us to differentiate

between these two scenarios based on observable preferences.

5 Conclusion and Outlook
In this paper, we analyzed preferences on two types of objects: preferences on data-sets con-

taining evidence in favor of a choice of a speci�c action and preferences over actions for a given

set of observations. We stated conditions under which only the frequency of observations in a

data-set matters for the choices of a decision maker and derived an expected utility represen-

tation for this situation. In particular, we were able to identify the von-Neumann-Morgenstern

utility function over outcomes as well as the beliefs associated with each action for a given set

of observations. We could also separate the beliefs into three components: the frequency of

cases in the data-set, the relevance of each of the cases for the prediction to be made and the

probabilistic prediction associated with each case. For the case of controlled statistical experi-

ments, we showed that a decision maker who is insensitive towards the degree of information

precision will use the frequency of observed outcomes to make predictions.

The results derived in this paper, however neglect the possibility that the precision of the infor-

mation might in�uence the preferences of the decision maker as in the model of GHTV (2007).

E.g., Grant, Kaji and Polak (1998, p. 234) quote the New York Times:

"there are basically two types of people. There are �want-to-knowers� and there are
�avoiders.� There are some people who, even in the absence of being able to alter out-
comes, �nd information of this sort bene�cial. The more they know, the more their anx-
iety level goes down. But there are others who cope by avoiding, who would rather stay
hopeful and optimistic and not have the unanswered questions answered."

In a companion paper, Eichberger and Guerdjikova (2008), we extend the BGSS (2005) ap-

proach by allowing the decision maker to take into account the precision of the data. We illus-

trate how the Ellsberg paradox can be generalized to apply to different degrees of information

precision. By restricting the validity of Axiom 3 to data-sets of equal length (and hence, of

equal precision), it is possible to generalize the results derived above to the case of a decision
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maker who is not indifferent to information precision. In Eichberger and Guerdjikova (2008),

we provide an axiomatization for this scenario and identify, for the case of controlled statistical

experiments, the degree of perceived imprecision of information, as well as the relative degrees

of optimism and pessimism. While the perceived imprecision declines as the number of obser-

vations increases, the relative degrees of optimism and pessimism are constant across data-sets

and can be interpreted as inherent characteristics of the decision maker.

In controlled statistical experiments, the number of observations can be used as a proxy for the

precision of information. However, in less structured environments, data-sets containing more

relevant cases for the action under consideration may be considered more precise. Hence, it

is conceivable that there exists a connection between the similarity of cases and the perceived

precision of information. We plan to address this issue in future research.

6 Appendix
Proof of Lemma 3.1:

Suppose (w.l.o.g.) that (a;Dn) �
�
a;Dk

�
� (a;Dm) for some distinct n, k and m 2 Nn f0g.

Then, by Axiom 3, we have:

(a;Dn) �
�
a;Dn+k

�
�
�
a;Dk

�
(a;Dn) �

�
a;D2n+k

�
�
�
a;Dn+k

�
�
�
a;Dk

�
:::

(a;Dn) �
�
a;Dmn+k

�
�
�
a;Dk

�
.

Similarly, �
a;Dk

�
�

�
a;Dk+m

�
� (a;Dm)�

a;Dk
�
�

�
a;Dk+m

�
�
�
a;Dk+2m

�
� (a;Dm)

:::�
a;Dk

�
�

�
a;Dk+mn

�
� (a;Dm) ,

implying

(a;Dn) �
�
a;Dmn+k

�
�
�
a;Dk

�
�
�
a;Dk+mn

�
� (a;Dm) ,

in contradiction to Axiom 1.

Now suppose that (a;Dn) �
�
a;Dk

�
� (a;Dm) for all m distinct from n and k. Then, by
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Axiom 3,

(a;Dn) �
�
a;Dn+k

�
�
�
a;Dk

�
,

hence, e.g., setting m = n + k =2 fn; kg, we obtain (a;Dm) �
�
a;Dk

�
, in contradiction to the

assumption above.�
Proof of Theorem 4.1:

It is straightforward to check that the representation satis�es the axioms. Hence, we only prove

the existence of the representation and its uniqueness properties. We do this in a sequence of

lemmas. Here we sketch the outline of the proof. Lemma 3.1 demonstrates that each data-set

can be considered equivalent to the frequency of observed cases it entails and hence, preferences

on action-data-set pairs A � D can be reduced to preferences on action-frequency pairs, A �
�jCj�1 \ QjCj�1. For a �xed action a, Lemma 6.1 derives an expected utility representation
of preferences % restricted to fag � Da, in which beliefs are given by the frequency of cases
observed in the data-set under consideration. This Lemma exploits the fact that under Axioms

1-5, preferences on fag�Da, or, equivalently, on fag��jRj�1\QjRj�1 satisfy the mixture space
axioms, which, together with the denseness of QjRj�1 in �jRj�1 and the continuity assumption

entailed in Axiom 3 leads to the desired representation. Still for a �xed a 2 A, Lemma 6.2
determines for each data-set D 2 D, the set of data-sets in Da, which are indifferent to D for
the given action a. The frequencies of these sets are denoted by Ha (D). The expected utility

representation of preferences can now be extended to the set fag�D by using the utility function
over outcomes derived in Lemma 6.1 and using the frequencies in Ha (D) to represent beliefs

for eachD. Lemma 6.3 shows that the correspondenceHa (D) satis�es the main assumption of

BGSS (2005), Concatenation. This property is used in Lemma 6.4 together with Theorem 1 in

EG (2007) to show that Ha (D) can be represented as similarity-weighted frequencies of cases

observed in D, thus identifying the sets P̂ ca and the similarity values sa (c). Lemma 6.5 uses

Axiom 6 to establish that the similarity function sa (c) is independent of the observed outcomes

and only depends on the action chosen in the speci�c case c. Last, Lemma 6.6 shows that under

Axiom 7, the same utility function over outcomes can be used in each of the representations

derived above for individual values of a. Axiom 5 then implies the desired representation.

Lemma 6.1 Fix an a 2 A. Under Axioms A1-A5, there exists a function va (r) : R ! R such
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that for all D 2 Da
Va (D) =

X
r2R

va (r) fD (a; r) (9)

represents % on fag � Da. Moreover, va is unique up to an af�ne-linear transformation.

Proof of Lemma 6.1:

Lemma 3.1 implies that the preference relation % induces a preference relation over action-
frequency pairs (a; f) with f 2 �kCk�1 \QkCk�1 de�ned by

(a;D) % (a0;D0)

iff

(a; fD) % (a0; fD0) .

It inherits all properties with which we endow the preference relation %. In particular, consider
% constrained to fag � Da. By Axioms 1-5, it is complete, transitive, continuous, has a largest
and a smallest element and satis�es the following independence condition: for all D, D0 2 DTa ,

(a; fD) % (a; fD0) , iff (10)

(a;�fD + (1� �) fD00) % (a;�fD0 + (1� �) fD00)

for all � 2 (0; 1) \ Q and all D00 2 D. This follows from Axiom 3 by setting a0 = a00 = a,

assuming that D00
1 = D

00
2 = D

00 and noting that

fD�D00 =
T � fD + T 00 � fD00

T + T 00
,

fD0�D00 =
T � fD0 + T 00 � fD00

T + T 00

holds, where T 00 is the length of D00. Let � = T
T+T 00 . It is obvious that by choosing the lengths

T and T 00 in an appropriate way, we can generate any rational-valued �. The result of Lemma

6.1 then follows almost directly from an application of the mixture-space theorem, see Fishburn

(1970, p.112). Small modi�cations have to be made to Fishburn's proof to take into account

the fact that we allow only for rational-valued frequencies. In particular, Fishburn's argument

requires that for all D 2 Da, there exists a data-set

D0 = (a; �ra)
k � (a; ra)

n

such that (a;D0) � (a;D). It is obvious, that in general such natural numbers k and n need

not exist. However, the continuity assumption contained in Axiom 3 together with the fact

that rational frequencies are dense in the simplex �jRj�1 allows us to approximate the utility of
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(a;D) by a sequence of data-setsD0 of the form (a; �ra)k � (a; ra)
n arbitrarily closely. It follows

that the utility values of all sets D 2 Da can be uniquely identi�ed.�

Lemma 6.2 Fix an a 2 A. For every D 2 D, there exists a maximal non-empty, compact and
convex subset of �jRj�1,

Ha (D) =

(
h 2 �jRj�1 j

X
r2R

va (r)h (r) = Va (D)

)
such that

Va (D) � Va (D
0) iff

(a;D) % (a;D0) .

Proof of Lemma 6.2:

To construct the setsHa (D) for a given a 2 A, we �rst de�ne the following sets:

Fa =
�
f 2 �jCj�1 \QjCj�1 j f (a0; r) = 0 for all a0 6= a

	
is the set of rational-valued frequencies which assign a frequency of 0 to all cases not containing

action a, and, for a given set D,

Fa (D;�) = : ff 2 Fa j (a; f) � (a; fD)g

Fa (D;�) = : ff 2 Fa j (a; fD) � (a; f)g

denote the sets of frequencies in Fa which are preferred to, respectively, less preferred than fD.
By Axiom 5, at least one of these sets is non-empty. If both of these sets are non-empty, Axiom

3 implies that:

inf Fa (D;�) = supFa (D;�) =: Fa (D;�)
IfFa (D;�) = ?, then (a;D) � (a; (a; �ra)) and we de�neFa (D;�) to be equal to supFa (D;�)
and symmetrically if Fa (D;�) = ?.
We now de�ne the setHa (D) to be the projection of the set Fa (D;�) to �jRj�1, i.e.

Ha (D) =
�
h 2 �jRj�1 j for some f 2 Fa (D;�) , h (r) = f (a; r) for all r 2 R

	
.

By Lemma 6.1, we know that for all h, h0 2 Ha (D),X
r2R

va (r)h (r) =
X
r2R

va (r)h
0 (r)

De�ne the value of Va at D to be:

Va (D) =:
X
r2R

va (r)h (r)
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for some (and hence for all) h 2 Ha (D). By the construction of Ha (D), it is obvious that

Va (D) represents the preference relation % constrained to fag � D.
To complete the proof, we show that each h 2 �jRj�1 with the property thatX

r2R
va (r)h (r) = Va (D)

is inHa (D). Since the set of such h is compact and convex, this establishes the result.

Note that for every real-valued h, we can construct two sequences of rational-valued frequencies
~f1::: ~fn::: 2 Fa and ~f 1::: ~fn::: 2 Fa such that:

lim
n!1

~fn (a; r) = lim
n!1

~fn (a; r) = h (r) for all r 2 R.

The separating hyperplane theorem ensures that we can choose the two sequences in such a way

that: X
r2R

va (r) ~fn (a; r) <
X
r2R

va (r)h (r) = Va (D)X
r2R

va (r) ~f
n (a; r) >

X
r2R

va (r)h (r) = Va (D)

for all n and rearrange the elements so that:X
r2R

va (r) ~fn (a; r) �
X
r2R

va (r) ~fn+1 (a; r)X
r2R

va (r) ~f
n (a; r) �

X
r2R

va (r) ~f
n+1 (a; r)

for all n. Then, for each n,

~fn 2 Fa (D;�)
~fn 2 Fa (D;�)

Furthermore, for each f 0 2 Fa (D;�), there is an N such that for all n > N , ~fn � f 0 and for
each f 00 2 Fa (D;�), there is an M such that for all n > M , ~fn � f 00. Hence, the frequency
vector f such that f (a; r) = h (r) for all r 2 R and f (a0; r) = 0 for all a0 6= a satis�es

f 2 Fa (D;�)

Therefore, h 2 Ha (D).�
Our next result shows that the set of probability distributions associated with the concatenation

of two data-sets is a convex combination of the probability distributions associated with these

data-sets:

Lemma 6.3 For every D, D0 2 D,
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Ha (D �D0) = �Ha (D) + (1� �)Ha (D
0)

for some � 2 (0; 1).
Proof of Lemma 6.3:

Let �rst (a;D) � (a;D0). By Axiom 3,

(a;D) � (a;D �D0) � (a;D0) .

Then,

hD � va > hD�D0 � va > hD0 � va
holds for all hD 2 Ha (D), hD0 2 Ha (D

0) and hD�D0 2 Ha (D �D0). It is then obvious that

there is an � 2 (0; 1) such that:

[�hD + (1� �)hD0 ] � va = hD�D0 � va.

Hence,

�Ha (D) + (1� �)Ha (D
0) = Ha (D �D0) .

Let now (a;D) � (a;D0). Then, by de�nition Ha (D) = Ha (D
0) and the result would obtain

if we could show that (a;D �D0) � (a;D).
Consider two sequences of data-sets

�
~Dn

�
n=1;2:::

with limn!1 f ~Dn = fD such that
�
a; ~Dn�1

�
��

a; ~Dn

�
� (a;D) for all n and

�
D̂0
n

�
n=1;2:::

with limn!1 fD̂n = fD such that (a;D) ��
a; D̂n

�
�
�
a; D̂n�1

�
for all n. By Axiom 3, we have that for all n:�
a; ~Dn �D0

�
� (a;D) � (a;D0) �

�
a; D̂n �D0

�
.

Hence, for all n and all ~hn 2 Ha

�
~Dn �D0

�
, ĥn 2 Ha

�
D̂n �D0

�
, we have

va � ~hn > va � hD = va � hD0 > va � ĥn.

Furthermore, since

lim
n!1

~Dn �D0 = lim
n!1

D̂n �D0 = D �D0,

lim
n!1

va � ~hn = lim
n!1

va � ĥn = va � hD�D0

for some (and hence, for all) hD�D0 2 Ha (D �D0). This implies:

lim
n!1

va � ~hn = lim
n!1

va � ĥn = va � hD�D0 = va � hD = va � hD0 ,

or, according to the de�nition ofHa,

(a;D) � (a;D �D0) � (a;D0) .�
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Lemma 6.4 Fix an a 2 A. Under Axioms 1 � 5, there exist a probability correspondence
P̂a : C � �jRj�1, a similarity function sa : A � R ! R+n f0g and a utility function over
outcomes va : R! R, such that % on fag � D can be represented by:

Va (D) =

P
r2R va (r)

P
c2C p̂

c
a (r) sa (c) fD (c)P

c2C sa (c) fD (c)
.

Here, fD (c) is the frequency with which case c is observed in D and p̂ca is any probability
distribution over outcomes in the image of P̂a (c). The utility function v is unique up to an af�ne-
linear transformation, the similarity function sa is unique up to a multiplication by a positive
number and there is a unique probability correspondence P̂a such that P̂a (c) is maximal with
respect to set inclusion when c = (a0; r) with a0 6= a and satis�es P̂a (a; r) = �r.

Proof of Lemma 6.4:

Construct the function va as in Lemma 6.1. Lemma 6.2 implies the existence of a convex and

compact correspondenceHa : D� �jRj�1 such that

Va (D) =
X
r2R

h (r) va (r) with h (r) 2 Ha (D)

represents% on fag�D. FromHa, we now construct a new correspondence ~Ha in the following

way: let
~Ha (D) =

�
h (r) = (fD (a; r))r2R

	
for all D 2 Da. For D = (a0; r), a0 6= a, let

~Ha (D) = Ha (D) .

For all other data-sets, D such that D 2 DT for some T , let �i (D) 2 (0; 1), i 2 f1:::Tg,PT
i=1 �i (D) = 1 be such that:

Ha (D) =
TX
i=1

�i (D)Ha (ci) .

Such coef�cients exist by an iterative application of Lemma 6.3. Using these coef�cients, de�ne

~Ha (D) =:

TX
i=1

�i (D) ~Ha (ci) .

It is easily checked that the correspondence ~Ha is non-empty, convex and compact and ~Ha (D) �
Ha (D) for all D 2 D. Hence, Va (D) can be written equivalently as:

Va (D) =
X
r2R

h (r) va (r) with h (r) 2 ~Ha (D) .

Furthermore, ~Ha inherits the property ofHa:

~Ha (D �D0) = � ~Ha (D) + (1� �) ~Ha (D
0)
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for some � 2 (0; 1).
To prove the Lemma, we have to show that ~Ha can be written as

~Ha (D) =

�P
c2C p̂

c
a (r) sa (c) fD (c)P

c2C sa (ac) fD (c)
j p̂ca 2 P̂a (c)

�
for some compact and convex subsets of �jRj�1, P̂a (c) and some positive numbers sa (c).

We set

P̂a (c) =: ~Ha (c)

for all c 2 C.
As shown in EG (2007), for a given compact and convex-valued correspondence ~Ha (D), the

existence of a similarity function unique up to a multiplication by a positive number is guaran-

teed under the following conditions:

1. (Invariance) ~Ha (D) depends only on the frequency fD and the length of D.

2. (Concatenation)Consider a data-set D̂ 2 Dwith
���D̂��� = T and, for some n 2 Z+, letD1:::Dn

2 DT be such that D1 � ::: �Dn = D̂
n: Then, there exists a vector (�1:::�n�1) 2 int (�n�1)

such that, for every k 2 Z+,
nX
i=1

�i ~Ha

�
Dk
i

�
= ~Ha

�
D̂k
�
:

3. (Linear Independence) For every T 2 Z+, the data-sets (c1)T ,:::,
�
cjCj
�T satisfy the following

condition:

There are at least three distinct i, j, k 2 f1::: jCjg, such that ~Ha

�
(ci)

T
�
, ~Ha

�
(cj)

T
�
and

~Ha

�
(ck)

T
�
are:

� either singletons

~Ha

�
(cm)

T
�
=
n
ha

�
(cm)

T
�o

form 2 fi; j; kg

and ha
�
(ci)

T
�
, ha

�
(cj)

T
�
and ha

�
(ck)

T
�
are non-collinear,

� or polyhedra with a non-empty interior such that no three of their extreme points are collinear.

Condition 1, Invariance, is satis�ed by Axiom 2, with the additional property that under Axiom

3, ~Ha (D) does not depend on the length of the data-set D, but only on its frequency, fD,

Condition 2, Concatenation, is implied by Lemma 6.3. To see this, take sets D1:::Dn and D̂ as
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in the statement of condition 2 and apply Axiom 3 iteratively:

~Ha (D1 �D2) = �1 ~Ha (D1) + (1� �1) ~Ha (D2)

~Ha (D1 �D2 �D3) = �2 ~Ha (D1 �D2) + (1� �2) ~Ha (D3) =

= �2

h
�1 ~Ha (D1) + (1� �1) ~Ha (D2)

i
+ (1� �2) ~Ha (D3) =

= �1�2 ~Ha (D1) + (1� �1)�2 ~Ha (D2) + (1� �2) ~Ha (D3)

:::

~Ha (D1 � ::: �Dn) =
n�1Y
i=1

�i ~Ha (D1) + (1� �1)
n�1Y
i=2

�i ~Ha (D2)

+ (1� �2)
n�1Y
i=3

�i ~Ha (D2) :::+ (1� �n�1) ~Ha (Dn)

Set �1 =:
n�1Y
i=1

�i, �2 =: (1� �1)
n�1Y
i=2

�i... �n =: (1� �n�1) and note that
Pn

i=1 �i = 1 and

�i 2 (0; 1) for all i 2 f1:::ng.

~Ha (D1 � ::: �Dn) = ~Ha

�
D̂n
�
,

but by Lemma 3.1, for every n 2 Z+n f0g, we have that

fD̂n �a fD̂,

and hence
~Ha

�
D̂
�
= ~Ha

�
D̂n
�
=

nX
i=1

�i ~Ha (Di) .

Furthermore, also by Lemma 3.1 , for any k 2 Z+n f0g

~Ha

�
Dk
�
= ~Ha (D) .

Therefore,

~Ha

�
D̂k
�
= ~Ha

�
Dk
1 � ::: �Dk

n

�
=

nX
i=1

�i ~Ha

�
Dk
i

�
=

nX
i=1

�i ~Ha (Di)

for the same values of �i as above.

To show that Condition 3, Linear Independence is satis�ed, consider three cases c1 = (a; r1),

c2 = (a; r2) and c3 = (a; r3) with three distinct outcomes r1, r2, r3. ~Ha (c1), ~Ha (c2) and
~Ha (c3) consist of single non-collinear points �r1 , �r2 and �r3 , respectively. Hence, the Linear

Independence condition is satis�ed.

Theorem 1 in EG (2007) then ensures the existence of a similarity function sa : A � R !
R+n f0g unique up to a multiplication by a positive number. The speci�c values of s can be
derived as in Lemma 5 in EG (2007). In particular, let ha : D! �jRj�1 be a function such that
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ha (D) 2 ~Ha (D) for all D 2 D such that whenever

~Ha (D �D0) = � ~Ha (D) + (1� �) ~Ha (D
0) ,

ha (D �D0) = �ha (D) + (1� �)ha (D0) .

Lemma A4 in EG (2007) shows how ~Ha can be represented as a collection of functions ha
satisfying this property. De�ne p̂ca =: ha (c). The system of equations:P

c2C
1
jCjsa (c) p̂

c
aP

c2C sa (c)
=
X
c2C

�cha (c) ; (11)

where the coef�cients �c 2 (0; 1) with
P

c2C �c = 1 are such that for the data-setDC , in which

each case in C is observed exactly once,

~Ha

�
DC
�
=
X
c2C

�c ~Ha (c) .

The proof in EG (2007) demonstrates that a solution to the equation exists, is unique up to a

multiplication by a positive number and does not depend on the choice of the function ha as

long as it satis�es the condition above. Hence, a similarity function with the desired properties

exists and we can write

~Ha (D) =

�P
c2C p̂

c
asa (c) fD (c)P

c2C sa (c) fD (c)
j p̂ca 2 P̂a (c)

�
for all D 2 D, where P̂a (c) = ~Ha (c), thus leading to the desired representation.�
The next lemma shows that under Axiom 6, the similarity function derived above is independent

of outcomes.

Lemma 6.5 Under Axioms 1- 6, the similarity weights derived in Lemma 6.4, sa (a; r) are
independent of r. Hence, for any a 2 A,

Va (D) =

P
r2R va (r)

P
c2C p̂

c
a (r) sa (a

c) fD (c)P
c2C sa (c) fD (c)

,

where ac denotes the action chosen in case c, represents % restricted to fag � D.

Proof of Lemma 6.5:

For any two cases (a1; r1) and (a2; r2), sa (a1; r1) and sa (a2; r2) satisfy:
sa (a1; r1) p̂a (a1; r1) + sa (a2; r2) p̂a (a2; r2)

sa (a1; r1) + sa (a2; r2)
= (12)

= ~Ha ((a1; r1) ; (a2; r2)) =

= � ~Ha (a1; r1) + (1� �) ~Ha (a2; r2)

for some � 2 (0; 1). To ensure that sa can be written only as a function on A, we have to show

29



that for any outcomes r01 6= r1 and r02 6= r2, the same similarity values can be applied, i.e.,
sa (a1; r1) p̂a (a1; r

0
1) + sa (a2; r2) p̂a (a2; r

0
2)

sa (a1; r1) + sa (a2; r2)
= (13)

= ~Ha ((a1; r
0
1) ; (a2; r

0
2)) =

= �0 ~Ha (a1; r
0
1) + (1� �0) ~Ha (a2; r

0
2) .

This would be immediately implied, if we could show that � = �0, or, more generally that for

any D, D̂ 2 DTa0 and D0, D̂0 2 DTa00 ,

~Ha (D �D0) = � ~Ha (D) + (1� �) ~Ha (D
0)

if and only if
~Ha

�
D̂ � D̂0

�
= � ~Ha

�
D̂
�
+ (1� �) ~Ha

�
D̂0
�
.

To show this, we write Axiom 6 in terms of frequencies: let f1, f2, f̂1 and f̂2 denote the fre-

quencies of D1, D2, D̂1 and D̂2, respectively and let (a;D) % (a;D0) and
�
a; D̂

�
%
(-)

�
a; D̂0

�
.

Then, for � 2 (0; 1) \Q

�f1 + (1� �) f2 2 Fa (D �D0;�) for all f1 2 Fa (D;�) and all f2 2 Fa (D0;�)

holds if and only if

�f̂1+(1� �) f̂2 2 Fa
�
D̂ � D̂0;

�
(�)

�
for all f̂1 2 Fa

�
D̂;

�
(�)

�
and all f̂2 2 Fa

�
D̂0;

�
(�)

�
and

�f1 + (1� �) f2 2 Fa (D �D0;�) for all f1 2 Fa (D;�) and all f2 2 Fa (D0;�)

holds if and only if

�f̂1+(1� �) f̂2 2 Fa
�
D̂ � D̂0;

�
(�)

�
for all f̂1 2 Fa

�
D̂;

�
(�)

�
and all f̂2 2 Fa

�
D̂0;

�
(�)

�
.

Recall that

inf Fa (D;�) = supFa (D;�) = ~Ha (D)

inf Fa (D �D0;�) = supFa (D �D0;�) = ~Ha (D �D0)

Let �� be such that:
~Ha (D �D0) = �� ~Ha (D) + (1� ��) ~Ha (D

0)

and �̂ be such that:

~Ha

�
D̂ � D̂0

�
= �̂ ~Ha

�
D̂
�
+ (1� �̂) ~Ha

�
D̂0
�
.

Such �� and �̂ 2 (0; 1) exist according to Lemma 6.3. Since (a;D) % (a;D0),

�f1 + (1� �) f2 2 Fa (D �D0;�) for all f1 2 Fa (D;�) and all f2 2 Fa (D0;�)
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implies � > ��. For
�
a; D̂

�
%
(-)

�
a; D̂0

�
, we have

�f̂1+(1� �) f̂2 2 Fa
�
D̂ � D̂0;

�
(�)

�
for all f̂1 2 Fa

�
D̂;

�
(�)

�
and all f̂2 2 Fa

�
D̂0;

�
(�)

�
,

only if � >
(<)
�̂. According to Axiom 6, these two statements are equivalent, hence � > �� holds

if and only if � > �̂, implying that �̂ = ��.

Hence, the coef�cients � and �0 in expressions (12) and (13) are equal, implying that

s (a1; r1) = s (a1; r
0
1)

for all a1 2 A and all r1, r01 2 R. Similarity, therefore, does not depend on the outcome and can
be written as:

sa : A! R.�

Lemma 6.6 For a 2 A, let va : R ! R be the family of utility functions over outcomes,
sa : A ! R be the family of similarity functions and P̂a : C � �jRj�1 be the family of
probability correspondences derived in Lemmas 6.4 and 6.5. Under Axioms 1-7, there exist
positive af�ne-linear transformations of (va)a2A, (~va)a2A with

~va = Aava +Ba (Aa > 0, Ba 2 R)
such that

~va (r) = v (r)
for all a 2 A, and all r 2 R and such that

V (a;D) =

P
r2R v (r)

P
c2C p̂

c
a (r) sa (a

c) fD (c)P
c2C sa (c) fD (c)

represents % on A� D.

Proof of Lemma 6.6:

According to Lemma 6.1, all va's are unique up to a positive af�ne-linear transformation.

Hence, V (a;D) will represent preferences constrained to the set fag�D for any ~va = Aava +
Ba with Aa > 0 and Ba 2 R. According to Axiom 7,

(a; (a; r)) � (a0; (a0; r))

for all a, a0 2 A and all r 2 R. Hence, we rescale all va so that:

~va (�r) = 1

and

~va (r) = 0,

where �r = �ra and r = ra for all a 2 A. Note that this rescaling can be done in a unique way
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and that it implies:

V (a; (a; r)) = V (a0; (a0; r))

for all a, a0 2 A and all r 2 R. Hence, it remains to show that V (a;D) indeed represents %.
Take two arbitrary action-data-set-pairs: (a;D) and (a0;D0). Suppose that

(a;D) % (a0;D0) .

Let h 2 ~Ha (D) and h0 2 ~Ha0 (D
0) and suppose that ~D 2 Da with frequency f ~D (a; r) = h (r)

for all r 2 R and ~D0 2 Da0 with frequency f ~D0 (a0; r) = h0 (r) for all r 2 R exist (i.e., h and h0

are rational-valued). Then,

(a;D) �
�
a; ~D

�
(a0;D0) �

�
a0; ~D0

�
Let D̂ 2 Da0 have the property that:

fD̂ (a
0; r) = f ~D (a; r) for all r 2 R.

We now show that
�
a0; D̂

�
�
�
a; ~D

�
. We do this by an induction argument on the supports of

f ~D and fD̂. If jsupp (fD̂)j = 1, the statement immediately follows from Axiom 7. Assume that
the statement is true for all f ~D and fD̂ such that jsupp (fD̂)j � N�1. Now let jsupp (fD̂)j = N
and pick an r̂ 2 R such that fD̂ (a0; r̂) > 0. Let D1 and D0

1 be two data-sets of equal length

with frequencies f ~D(a;r)P
r 6=r̂ f ~D(a;r)

and fD̂(a
0;r)P

r 6=r̂ fD̂(a
0;r) for all r 6= r̂, respectively. Let

m
q
=

P
r 6=r̂ fD̂(a

0;r)

fD̂(a
0;r̂)

and note that both D̂ and ~D can be represented as concatenations using such D1 and D0
1:

~D = (D1)
pm � (a; r̂)pq

D̂ = (D0
1)
km � (a0; r̂)kq

for some natural numbers p and k We know that (a; (a; r̂)) � (a0; (a0; r̂)) and, since jsupp (fD1)j =��supp �fD0
1

��� = N � 1, by the induction hypotheses, we have
(a;D1) � (a0;D0

1) .

Hence, by Axiom 5

(a; (D1)
m � (a; r̂)q) �

�
a0; (D0

1)
m � (a0; r̂)q

�
,

or, according to Lemma 3.1,
�
a; ~D

�
�
�
a; D̂

�
.

It follows that for the sets D, D̂ and ~D chosen above, we have:

(a;D) �
�
a; ~D

�
�
�
a0; D̂

�
.
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Hence, the comparison between (a;D) and (a0;D0) reduces to the one between
�
a0; D̂

�
and�

a0; ~D0
�
and we have �

a0; D̂
�
%
�
a0; ~D0

�
.

We already know from Lemma 6.5 that these preferences are represented by

Va0
�
D̂
�
=

P
r2R va0 (r)

P
c2C fD̂ (c) s (a

0; ac) p̂
c
a0 (r)P

c2C fD̂ (c) s (a
0; ac)

�
P

r2R va0 (r)
P

c2C f ~D0 (c) s (a0; ac) p̂
c
a0 (r)P

c2C f ~D0 (c) s (a0; ac)
= Va0

�
~D0
�

Since va0 (r) = v (r) and since D̂ and ~D0 2 Da0 , this expression reduces to:X
r2R

v (r) fD̂ (a
0; r) �

X
r2R

v (r) f ~D0 (a0; r) .

By construction, X
r2R

v (r) fD̂ (a
0; r) =

X
r2R

v (r) f ~D (a; r)

and, by Lemma 6.5,X
r2R

v (r) f ~D (a; r) =

P
r2R v (r)

P
c2C fD (c) s (a; ac) p̂

c
a (r)P

c2C fD (c) s (a; ac)X
r2R

v (r) f ~D0 (a; r) =

P
r2R v (r)

P
c2C fD0 (c) s (a0; ac) p̂

c
a0 (r)P

c2C fD0 (c) s (a0; ac)
.

We, therefore, conclude that

V (a;D) =

P
r2R v (r)

P
c2C fD (c) s (a; ac) p̂

c
a (r)P

c2C fD (c) s (a; ac)

�
P

r2R v (r)
P

c2C fD0 (c) s (a0; ac) p̂
c
a0 (r)P

c2C fD0 (c) s (a0; ac)
= V (a0;D0) .

Similarly, starting with the assumption that V (a;D) � V (a0;D0), and repeating the same

arguments in reverse order, one can show that (a;D) % (a0;D0). For the case, in which ~D and
~D0 as de�ned above do not exist, we can choose sequences of data-sets which approximate the

corresponding frequencies h 2 ~Ha (D) and h0 2 ~Ha0 (D
0) and using the continuity assumption

in Axiom 3 show that the same result applies. Hence,

V (a;D) =

P
r2R v (r)

P
c2C fD (c) s (a; ac) p̂

c
a (r)P

c2C fD (c) s (a; ac)

represents % on A� D.�
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