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1 Introduction

The case-based decision theory was proposed by Gilboa and Schmeidler (1995) as an alternative

theory for decision making under uncertainty. It models decisions in situations of structural

ignorance, in which neither states of the world, nor their probabilities can be derived from the

description of the problem. A decision-maker can, therefore, only learn from experience, by

evaluating an act based on its past performance in similar circumstances.

This behavior deviates significantly from the one of a Bayesian expected utility maximizer.

Nevertheless, Gilboa and Schmeidler (1996) show that a case-based decision-maker learns to

choose the optimal (expected utility maximizing) act if the same problem is repeated an infinite

number of times. This result relies on a rule for adapting the aspiration level that combines

’’realism’’, i.e. updating the aspiration level towards the highest average payoff achieved, with

’’ambitiousness’’, i.e. updating the aspiration level upwards on an infinite but sparse subset of

periods.

However, the result Gilboa and Schmeidler (1996) depends on the assumption of a specific

similarity function: two acts are similar if and only if they are identical.

In this note, I explore whether case-based decisions lead to expected utility maximization in the

limit if more general similarity functions are considered. I assume that the set of acts is the one-

dimensional simplex and define the similarity function as decreasing in the Euclidean distance.

Following results obtain:

1. Similarity functions which are convex over some range lead a case-based decision-maker

to behave as if she were Bayesian;

2. For concave similarity functions, a case-based decision-maker either chooses the better

of the two corner acts 0 and 1 or switches constantly between these two acts. She may,

therefore, fail to behave as a Bayesian.

2 The Model

I use the model of Gilboa and Schmeidler (1996). A decision-maker faces an identical decision
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problem p in each period t = 1, 2.... A ≡ [0; 1] denotes the set of available acts. The utility

resulting from the choice of a ∈ A is an i.i.d. random variable Ua with a continuous distribution

function (Πa)a∈A. The distributions (Πa)a∈A have finite expectations µa, finite variance σa and

bounded and convex supports ∆a.

The decision-maker’s perception of similarity is described by a function s : A×A→ [0; 1]:

s (a; a) = 1

s (a; a�) = s (a�; a)

s (0; 1) = 0.

s depends only on the distance between a and a�.

The memory of the decision-maker is represented by a set of cases. A case is a triple of a

problem encountered, an act chosen and a utility realization achieved. Since the problem is

identical in each period of time, a case is characterized by an act and a utility realization. As in

Gilboa and Schmeidler (1996), the memoryMt contains only cases actually encountered by the

decision-maker until period t:

Mt = ((aτ ;uτ ))τ=1,2...t .

The aspiration level of the decision-maker in period t is ūt.

The case-based decision-rule prescribes choosing the act with maximal cumulative utility in

each period of time. The cumulative utility of an act a at time t is given by:

Ut (a) =
t[

τ=1

s (a; aτ) (uτ − ūt) .

The set of all possible decisions paths that can be observed can be written as

S0 =
q
ω = (at;ut; ūt)t=1,2... | at ∈ A, ut ∈ ∆, ūt ∈ R

r
,

where ∆ = ∪a∈A∆a denotes the set of possible utility realizations. Let S1 be the set of those

paths on which the decision-maker chooses argmaxa∈A Ut (a) in each period:

S1 =

�
ω ∈ S0 | at = argmax

a∈A
Ut (a) for all t = 1, 2...

�
.

As well as at, ut and ūt all variables introduced below depend on the path ω. I neglect this

dependence in the notation for simplicity of exposition.

Ct (a) denotes the set of periods preceding t in which a has been chosen:

Ct (a) = {τ < t | aτ = a}
3



Let

Xt (a) =

[
τ∈Ct(a)

uτ

|Ct (a)|
denote the average utility obtained by choosing a until period t if |Ct (a)| > 0. Xt =: maxa∈AXt (a)
stays for the maximal achieved average utility until time t.

The two adaptation rules proposed by Gilboa and Schmeidler (1996) are:

ū1 = ū
ūt = βūt−1 + (1− β)Xt for t ≥ 2 (1)

and
ū1 = ū
ūt = βūt−1 + (1− β)Xt for t ≥ 2, t /∈ N
ūt = Xt + h for t ≥ 2, t ∈ N ,

(2)

where N ⊂ N is a sparse set, β ∈ (0; 1) describes the speed of updating of the aspiration level

and h > 0 is a constant by which the aspiration level is increased in a period t ∈ N .

Finally, denote by S and S� the set of paths, on which the case-based rule is applied in combi-

nation with (1) and (2), respectively:

S =

�
ω ∈ S1 | ū1 = ū1ūt = βūt−1 + (1− β)Xt for t ≥ 2

�
S� =

⎧⎨⎩ω ∈ S1 |
ū1 = ū1
ūt = βūt−1 + (1− β)Xt for t ≥ 2, t /∈ N
ūt = Xt + h for t ≥ 2, t ∈ N ,

⎫⎬⎭ .

Let P and P � be probability measures on S and on S�, respectively which are consistent with

(Πa)a∈A, as in Gilboa and Schmeidler (1996, p.11).

Denote by

π (a) = lim
t→∞

|Ct (a)|
t

the frequency with which a is chosen, if the limit on the right hand side exists. Usually, this

frequency will be path-dependent.

Optimal behavior in the limit means that

π

�
argmax

a∈A
µa

�
= 1

almost surely holds. For A finite and a similarity function:

s (a; a�) = 1, if a = a� (3)

s (a; a�) = 0, else,

Gilboa and Schmeidler (1996) show that (2) implies optimal behavior in the above sense. For
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(1), Gilboa and Schmeidler (1996) demonstrate that for each ε > 0, there is a ū0, so that for all

ū ≥ ū0, expected utility maximization obtains with probability of at least (1− ε).

The following two sections analyze the implications of a non-degenerate similarity function on

learning.

3 Learning with a Concave Similarity Function

Assumption 1
s (a; a�) = f (na− a�n) ,

with f � < 0 and f �� < 0, as illustrated in figure 1.

aa�

s(a; a�)

1 ....................................................................................
1

.....................................

s(a; a�)

Figure 1

The concavity of s implies that the greater the distance of two acts a� and a�� from the reference

act a, the more the decision-maker distinguishes between a� and a�� with respect to their similarity

to a.
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Let a1 = ā and let u1 (ā) denote the utility realization of portfolio ā in period 1.

Proposition 1 Let assumption 1 hold. Define S̃ as
S̃ = {ω ∈ S | u1 (ā) ≤ max {µ0;µ1}} .

For each ε > 0 there exists a ū0 such that for any ū1 > ū0:

P

�
ω ∈ S | ∃π

�
arg max

a∈{0;1}
µa

�
= 1

�
≥ (1− ε)P

�
S̃
�

P

⎧⎨⎩ω ∈ S |
for each a ∈ A ∃π (a) such that
π(0)
π(1)

= µ1−u1(ā)
µ0−u1(ā) and

π (a) = 0 for a /∈ {0; 1}

⎫⎬⎭ = 1− P
�
S̃
�

,

holds.

Hence, for concave similarity functions optimal behavior fails to emerge under rule (1). Only the

corner acts 1 and 0 are chosen infinitely often. On S̃, the better of these two acts is satisfactory

in the limit and is chosen with frequency 1 with arbitrarily high probability. On S\S̃, the limit

aspiration level exceeds the mean utilities of 1 and 0. Both acts are therefore chosen with positive

frequencies.

Proposition 2 Let assumption 1 hold. Assume that either
ū > max

u∈∆ā

u

or 1 ∈ N . Define S̃� as
S̃� = {ω ∈ S� | u1 (a) ≤ max {µ0;µ1}} .

Then:
P

�
ω ∈ S� | ∃π

�
arg max

a∈{0;1}
µa

�
= 1

�
= P

�
S̃�
�

P

⎧⎨⎩ω ∈ S� |
for each a ∈ A ∃π (a) such that
π(0)
π(1)

= µ1−u1(ā)
µ0−u1(ā) and

π (a) = 0 for a /∈ {0; 1}

⎫⎬⎭ = 1− P
�
S̃�
�

,

holds.

Two effects prevent efficient learning. First, the strict monotonicity of the similarity function

and the initially high aspiration level imply that ā is abandoned in the second period. Since s is

concave, only corner acts are chosen after t = 2.

Second, although ā is never chosen again, its initial realization influences the evolution of the

aspiration level. Especially, if u1 (ā) > max {µ0;µ1},
lim
t→∞

ūt = u1 (ā) > max {µ0;µ1}
and both a = 0 and a = 1 seem unsatisfactory in the limit.
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4 Introducing Convexities into the Similarity Function

The proof of proposition 1 heavily relies on the concavity of the similarity function. I, therefore,

explore how results change if the similarity function is convex over some range of values.

Assumption 2 Let
s (a; a�) = f (na− a�n) ,

with f � < 0, f �� < 0 for na− a�n ≤ 1
l

and some l > 1. Let
f (na− a�n) = 0,

for na− a�n ≥ 1
l
.

A convex similarity function implies that the greater the distance of two acts a� and a�� from the

referential act a, the less is the decision-maker able to distinguish between a� and a�� with respect

to their similarity to a. When l → ∞, s approaches the similarity function (3) considered by

Gilboa and Schmeidler (1996).

Assumption 3 Let a1 = 0 and let

at = arg min
a∈argmaxUt(a)

�����arg maxa∈[0;1]
{Ut (a)}− at−1

����� .

Assumption 3 says that when indifferent among several acts, the decision-maker chooses the act

closest to the act chosen last.

Figure 2 illustrates assumptions 2 and 3.

The set of paths consistent with (2) and assumptions 2 and 3 is denoted by:

S�� =
�
ω ∈ S� | a1 = 0

at = argmina∈argmaxUt(a)
���argmaxa∈[0;1] {Ut (a)}− at−1���

�
.

Proposition 3 For all ū1 ∈ R and all β ∈ (0; 1),
P

�
ω ∈ S�� | ∃π

�
argmax

a

�
µa | a ∈

�
0;
1

l
;
2

l
...
l − 1
l
; 1

���
= 1

�
= 1.

Introducing convexities into the similarity function obviously improves the limit choice. Note,

however that although

lim
l→∞

�
argmax

a

�
µa | a ∈

�
0;
1

l
;
2

l
...
l − 1
l
; 1

���
= arg max

a∈[0;1]
µa,

optimal learning cannot obtain because A is uncountable. However, for sufficiently large l, the

investor’s limit choice approximates expected utility maximization with an arbitrary degree of

accuracy.
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5 Conclusion

It is beyond the scope of this note to explore whether similarity is better represented by a convex

or concave function. Intuitively, it seems that similarity perceptions are more vague for distant

objects, hence that convexity is a more appropriate assumption. If convexity of the similarity

function is indeed the more relevant case, then my findings would clearly support Gilboa and

Schmeidler’s claim that case-based decision-makers behave optimally in the limit.

Appendix

Proof of Proposition 1

Denote

Vt (a) =:
[

τ∈Ct(a)
[uτ (a)− ūt] ,
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with [
τ∈Ct(a)

[uτ (a)− ūt] = 0, if Ct (a) = ∅.

The proof proceeds in three steps. First, it is shown that a2 ∈ {0; 1}. Second, it is demonstrated

that at ∈ {0; 1} for all t ≥ 2. In step 3, applying theorem 1 of Gilboa and Schmeidler (1996)

shows that optimal behavior obtains on S̃ and theorem 1 of Gilboa and Pazgal (2001) allows to

derive the result on S\S̃.

Step 1

In t = 2,

U2 (ā) = V2 (ā) = u1 (ā)− βū1 − (1− β)u1 (ā) = β [u1 (ā)− ū1] < 0,
whereas:

U2 (a) = V2 (ā) s (a; ā) < 0.

Since s (a; ā) is strictly decreasing,

arg max
a∈[0;1]

U2 (a) ∈ {0; 1} .

Remark 1 Let Cτ (a) ≥ 1. Let ūτ > Xτ (a) and aτ 9= a.
ūτ+1 = βXτ+1 + (1− β) ūτ ≥ βXτ (a) + (1− β) ūτ

and ūτ > Xτ (a) imply
ūτ+1 > Xτ (a) , or
Vt (a) < 0

for each t ≥ τ such that ak 9= ā for all τ ≤ k < t.

Step 2

Assume w.l.g. that a2 = 0, i.e.

min
a∈[0;1]

s (a; ā) = 0

If aτ = 0 for all t > τ ≥ 2,

Ut (a) = s (a; ā)Vt (ā) + s (a; 0)Vt (0)

holds. If Vt (0) ≥ 0, at = 0, since

Ut (a) = s (a; ā)Vt (ā) + s (a; 0)Vt (0) ≤
≤ s (0; ā)Vt (ā) + Vt (0) = Ut (0) .

If Vt (0) < 0,

Ut (a) = s (a; ā)Vt (ā) + s (a; 0)Vt (0)

9



is convex, since Vt (ā) < 0, Vt (0) < 0 and s is concave. Therefore,

arg max
a∈[0;1]

Ut (a) ∈ {0; 1} .

Let at̄� = 1. t̄� is a.s. finite. If aτ = 1 for all t > τ ≥ t̄�,
Ut (a) = s (a; ā)Vt (ā) + s (a; 0)Vt (0) + s (a; 1)Vt (1) .

Vt̄� (0) < 0 implies Vt (0) < 0, see remark 1.

If Vt (1) ≤ 0 holds, Ut (a) is convex and at ∈ {0; 1}.

Let Vt (1) > 0. Since

Vt (1) > 0 > max {Vt (ā) ;Vt (0)} ,

Xt = Xt (1). Let

t̃ = max {t̄�; τ < t | Vτ (1) ≤ 0, aτ = 1, Vτ+1 (1) > 0} . (4)

Lemma 4 ūt > ūt̃.

Proof of lemma 4:

Since Vt̃ (1) ≤ 0, Xt̃ (1)− ūt̃ ≤ 0 holds. Vt̃+1 (1) > 0 implies

Xt̃+1 (1)− ūt̃+1 > 0 > max {Xt̃+1 (0)− ūt̃+1;Xt̃+1 (ā)− ūt̃+1} .

Hence,Xt̃+1 = Xt̃+1 (1) and

ūt̃+1 = βūt̃ + (1− β)Xt̃+1 (1) .

SinceXt̃+1 (1)− ūt̃+1 > 0,
ūt̃+1 > ūt̃

follows.

At t̃+ 2, Vt̃+2 (1) > 0 holds, hence Xt̃+2 =Xt̃+2 (1) > ūt̃+2 and

ūt̃+2 = βūt̃+1 + (1− β)Xt̃+2 (1) .

Therefore,

ūt̃+2 > ūt̃+1.

Hence, by induction, ūt > ūt̃.

At t,

Ut (1) = s (1; ā)Vt (ā) + Vt (1) .
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Hence, at = 1 if

s (1; ā)Vt (ā) + Vt (1) ≥ s (a; ā)Vt (ā) + s (a; 0)Vt (0) + s (a; 1)Vt (1) (5)

for all a ∈ [0; 1]. Rewrite (5) as

Vt (1) (1− s (a; 1))− s (a; 0)Vt (0) + [s (1; ā)− s (a; ā)]Vt (ā) ≥ 0
Vt (1) (1− s (a; 1))− s (a; 0) (t̄� − 2) [Xt̃ (0)− ūt̃] + [s (1; ā)− s (a; ā)] [u1 (ā)− ūt̃]
+ [ūt − ūt̃] [s (a; 0) (t̄� − 2)− s (1; ā) + s (a; ā)] ≥ 0.

Since s (·; ·) is concave,

arg min
a∈[0;1]

s (a; 0) (t̄� − 2) + s (a; ā) ∈ {0; 1} .

s (1; 0) (t̄� − 2) + s (1; ā) = s (1; ā)
and

s (0; 0) (t̄� − 2) + s (0; ā) = (t̄� − 2) + s (0; ā) > 1 + s (0; ā) > s (1; ā) .

It follows that:

min
a∈[0;1]

[ūt − ūt̃] [s (a; 0) (t̄� − 2)− s (1; ā) + s (a; ā)] = 0.
Therefore,

Ut (1)− Ut (a) ≥ Vt (1) (1− s (1; a))− s (a; 0)Vt̃ (0) + [s (1; ā)− s (a; ā)]Vt̃ (ā)
> Vt̃ (1) (1− s (a; 1))− s (a; 0)Vt̃ (0) + [s (1; ā)− s (a; ā)]Vt̃ (ā)
= Ut̃ (1)− Ut̃ (a) ≥ 0

for each a ∈ [0; 1], since Vt̃ (1) ≤ 0 and at̃ = 1. Hence, at = 1.

Analogously, if at−1 = 0 and Vt (0) < 0, at ∈ {0; 1}. For Vt (0) ≥ 0,
Ut (0)− Ut (a) = Vt (0) (1− s (a; 0))− s (a; 1)Vt (1) + [s (0; ā)− s (a; ā)]Vt (ā) ≥ 0,

since Vt (0) (1− s (a; 0)) ≥ 0, Vt (1) < 0, Vt (ā) < 0 and s (0; ā)−s (a; ā) < 0 for all a ∈ [0; 1].
Hence, at = 0.

Reasoning by induction implies

P {ω ∈ S | at ∈ {0; 1} for each t > 1} = 1. (6)

Step 3

On S̃, theorem 1 of Gilboa and Schmeidler (1996) applies. Hence, there exists a ū0 such that

for each ū1 ≥ ū0:
P

�
ω ∈ S | ∃π

�
arg max

a∈{0;1}
µa

�
= 1

�
≥ (1− ε)P

�
S̃
�

.
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If u1 (ā) > max {µ1;µ0}, limt→∞ ūt = u1 (ā) almost surely. Hence, on almost each ω, there is

a T (ω) such that

ūt > max {µ1;µ0}+ ξ

for each t > T (ω). Therefore, a = 0 and a = 1 are almost surely chosen infinitely often.

Theorem 1 in Gilboa and Pazgal (2001) implies:
π (0)

π (1)
=
µ1 − u1 (ā)
µ0 − u1 (ā)

S\S̃-a.s.. By (6), π (a) = 0 for a /∈ {0; 1}.

Proof of Proposition 2

The proof proceeds in three steps. Step 1 demonstrates that a2 ∈ {0; 1}. Step 2 shows that

at ∈ {0; 1} for t ≥ 2. Step 3 uses theorem 2 of Gilboa and Schmeidler (1996) and theorem 1 of

Gilboa and Pazgal (2001) to derive the result.

Step 1

At t = 2, either

U2 (ā) = V2 (ā) = u1 (ā)− βū1 − (1− β)u1 (ā) = β [u1 (ā)− ū1] < 0
or

U2 (ā) = V2 (ā) = u1 (ā)−X2 − h = −h < 0
holds. The strict monotonicity of s implies at ∈ {0; 1}.
Remark 2 Remark 1 applies, since for (τ + 1) /∈ N , ūτ+1 is adapted as under (1), whereas
for 0 ∈ N ,

ūτ+1 = Xτ+1 + h > Xτ+1 ≥ Xτ+1 (a)
holds.

Step 2

As in the proof of proposition 1, it can be shown that

P {ω ∈ S1 | at ∈ {0; 1} for each t > 1} = 1.
This follows from remark 2 and from the definition of t̃ in (4). Note that (4) implies

t̃+ 1, ...t̄� /∈ N ,

since for t ∈ N , Vt (at−1) < 0.
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Step 3

On S̃1, theorem 2 of Gilboa and Schmeidler (1996) applies. Therefore,

π

�
arg max

a∈{0;1}
µa

�
= 1

almost surely obtains.

On S1\S̃1, ūt → u1 (ā). Hence, a.s. there is a period T (ω) such that

|ūt − u1 (ā)| < ζ

for each t > T (ω) except on a sparse set of periods for an arbitrary ζ . Hence, the acts 0 and 1

are chosen an infinite number of times. But since now

lim
t→∞

ūt = u1 (ā) > max {µ0;µ1} ,

theorem 1 of Gilboa and Pazgal (2001) implies:
π (0)

π (1)
=
µ1 − u1 (ā)
µ0 − u1 (ā)

.

Proof of Proposition 3

Rule (2) implies

Ut̄ (0) = Vt̄ (0) < 0

for some finite t̄ > 0. By assumption 2,

Ut̄ (a) = 0 > Ut̄ (a
�) for all a ≥ 1

l
and a� <

1

l
.

Hence, at̄+1 = 1
l

by assumption 3. Remark 2 applies here as well. Hence, for a finite t̂ > t̄,

Ut̂

�
1

l

�
< 0

and

Ut̂ (a) = 0 > Ut̂ (a
�) for all a ≥ 2

l
and a� <

2

l
from assumption 2. Hence, at̂ = 2

l
, etc.

Once Ct
�
k
l

� ≥ 1 obtains for all k = 0...l,

Ut (a) =
l[
i=0

Vt

�
i

l

�
s

�
a;
i

l

�
= Vt

�
k

l

�
s

�
a;
k

l

�
+ Vt

�
k − 1
l

�
s

�
a;
k − 1
l

�
,

for a ∈ �k−1
l
; k
l

�
. According to remark 2, Vt

�
k
l

�
> 0 can hold for at most one k ∈ {0; ...l}. If

Vt

�
k

l

�
> 0,
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then at = at−1 = k
l
, since

Vt

�
k

l

�
> Vt

�
k

l

�
s

�
a;
k

l

�
+ Vt

�
k − 1
l

�
s

�
a;
k − 1
l

�
for all a ∈ �k−1

l
; k
l

�
and

Vt

�
k

l

�
> 0 ≥ Vt

�
k�

l

�
s

�
a;
k�

l

�
+ Vt

�
k� − 1
l

�
s

�
a;
k� − 1
l

�
for all k� 9= k and all a ∈ [0; 1] hold. If

max

�
Vt

�
k

l

�
;Vt

�
k − 1
l

��
< 0,

then Ut (a) is convex for a ∈ �k−1
l
; k
l

�
. Hence,

arg max
a∈[k−1l ;k

l ]
Ut (a) ∈

�
k

l
;
k − 1
l

�
and

argmax
a∈A

Ut (a) ∈
�
0;
1

l
; ...
k

l
; ...1

�
for every t.

The result then follows from theorem 2 of Gilboa and Schmeidler (1996).
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04-36 Christopher Koch Behavioral Economics und das
Entscheidungsverhalten des Wirtschaftsprüfers -
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