

SonderForschungsBereich 504

Rationalitätskonzepte, Entscheidungsverhalten und ökonomische Modellierung

No. 04-46

A Note on Case-Based Optimization with a Non-Degenerate Similarity Function

Ani Guerdjikova*

November 2004

I am indebted to my advisor Juergen Eichberger for his helpful guidance and to Alexander Zimper for his helpful suggestions and illuminating discussions. I would like to thank Hans Haller, Clemens Puppe, Itzhak Gilboa, Hans Gersbach, Klaus Ritzberger, as well as the articipants of the RUD conference in Evanston, of the FUR XI conference in Paris and of the PhD seminar at the University of Heidelberg for helpful discussions and comments. Financial support from the DFG is greatfully acknowledged.

*Cornell University, email: ag334@cornell.edu

Universität Mannheim L 13,15 68131 Mannheim

A Note on Case-Based Optimization with a Non-Degenerate Similarity Function¹

Ani Guerdjikova²

August 2004

The paper applies the "realistic-ambitious" rule for adaptation of the aspiration level suggested by Gilboa and Schmeidler (1996) to a situation in which the similarity between the available acts is represented by a non-degenerate function. The paper shows that the optimality result obtained by Gilboa and Schmeidler (1996) in general fails. With a concave similarity function, the best corner act is chosen in the limit. Introducing convex regions into the similarity function improves the limit choice. A sufficiently fine similarity function allows to approximate optimal behavior with an arbitrary degree of precision.

Keywords: Case-Based Decision Theory, similarity, optimal behavior.

JEL classification: D81, D83

¹ I am indebted to my advisor Juergen Eichberger for his helpful guidance and to Alexander Zimper for his helpful suggestions and illuminating discussions. I would like to thank Hans Haller, Clemens Puppe, Itzhak Gilboa, Hans Gersbach, Klaus Ritzberger, as well as the participants of the RUD conference in Evanston, of the FUR XI conference in Paris and of the PhD seminar at the University of Heidelberg for helpful discussions and comments. Financial support from the DFG is greatfully acknowledged.

² University of Heidelberg, Alfred-Weber Institute, Grabengasse 14, 69117 Heidelberg, Germany, Tel.: 0049/6221/54-2945, Fax: 0049/ 6221/54-2997, e-mail: ani.guerdjikova@awi.uni-heidelberg.de.

1 Introduction

The case-based decision theory was proposed by Gilboa and Schmeidler (1995) as an alternative theory for decision making under uncertainty. It models decisions in situations of structural ignorance, in which neither states of the world, nor their probabilities can be derived from the description of the problem. A decision-maker can, therefore, only learn from experience, by evaluating an act based on its past performance in similar circumstances.

This behavior deviates significantly from the one of a Bayesian expected utility maximizer. Nevertheless, Gilboa and Schmeidler (1996) show that a case-based decision-maker learns to choose the optimal (expected utility maximizing) act if the same problem is repeated an infinite number of times. This result relies on a rule for adapting the aspiration level that combines "realism", i.e. updating the aspiration level towards the highest average payoff achieved, with "ambitiousness", i.e. updating the aspiration level upwards on an infinite but sparse subset of periods.

However, the result Gilboa and Schmeidler (1996) depends on the assumption of a specific similarity function: two acts are similar if and only if they are identical.

In this note, I explore whether case-based decisions lead to expected utility maximization in the limit if more general similarity functions are considered. I assume that the set of acts is the onedimensional simplex and define the similarity function as decreasing in the Euclidean distance. Following results obtain:

- Similarity functions which are convex over some range lead a case-based decision-maker to behave as if she were Bayesian;
- For concave similarity functions, a case-based decision-maker either chooses the better of the two corner acts 0 and 1 or switches constantly between these two acts. She may, therefore, fail to behave as a Bayesian.

2 The Model

I use the model of Gilboa and Schmeidler (1996). A decision-maker faces an identical decision

problem p in each period $t = 1, 2, ..., A \equiv [0; 1]$ denotes the set of available acts. The utility resulting from the choice of $a \in A$ is an i.i.d. random variable \mathfrak{U}_a with a continuous distribution function $(\Pi_a)_{a \in A}$. The distributions $(\Pi_a)_{a \in A}$ have finite expectations μ_a , finite variance σ_a and bounded and convex supports Δ_a .

The decision-maker's perception of similarity is described by a function $s: A \times A \rightarrow [0, 1]$:

$$s(a;a) = 1$$

 $s(a;a') = s(a';a)$
 $s(0;1) = 0.$

s depends only on the distance between a and a'.

The memory of the decision-maker is represented by a set of cases. A case is a triple of a problem encountered, an act chosen and a utility realization achieved. Since the problem is identical in each period of time, a case is characterized by an act and a utility realization. As in Gilboa and Schmeidler (1996), the memory M_t contains only cases actually encountered by the decision-maker until period t:

$$M_t = ((a_\tau; u_\tau))_{\tau=1,2...t}.$$

The aspiration level of the decision-maker in period t is \bar{u}_t .

The case-based decision-rule prescribes choosing the act with maximal cumulative utility in each period of time. The cumulative utility of an act a at time t is given by:

$$U_{t}(a) = \sum_{\tau=1}^{t} s(a; a_{\tau}) (u_{\tau} - \bar{u}_{t})$$

The set of all possible decisions paths that can be observed can be written as

$$S_0 = \left\{ \omega = (a_t; u_t; \bar{u}_t)_{t=1,2\dots} \mid a_t \in A, u_t \in \Delta, \bar{u}_t \in \mathbb{R} \right\},\$$

where $\Delta = \bigcup_{a \in A} \Delta_a$ denotes the set of possible utility realizations. Let S_1 be the set of those paths on which the decision-maker chooses $\arg \max_{a \in A} U_t(a)$ in each period:

$$S_{1} = \left\{ \omega \in S_{0} \mid a_{t} = \arg \max_{a \in A} U_{t}(a) \text{ for all } t = 1, 2... \right\}.$$

As well as a_t , u_t and \bar{u}_t all variables introduced below depend on the path ω . I neglect this dependence in the notation for simplicity of exposition.

 $C_t(a)$ denotes the set of periods preceding t in which a has been chosen:

$$C_t(a) = \{ \tau < t \mid a_\tau = a \}$$

Let

$$X_t(a) = \frac{\sum_{\tau \in C_t(a)} u_{\tau}}{|C_t(a)|}$$

denote the average utility obtained by choosing a until period t if $|C_t(a)| > 0$. $X_t =: \max_{a \in A} X_t(a)$ stays for the maximal achieved average utility until time t.

The two adaptation rules proposed by Gilboa and Schmeidler (1996) are:

$$\bar{u}_1 = \bar{u}$$

$$\bar{u}_t = \beta \bar{u}_{t-1} + (1 - \beta) X_t \text{ for } t \ge 2$$
(1)

and

$$\overline{u}_{1} = \overline{u}
\overline{u}_{t} = \beta \overline{u}_{t-1} + (1-\beta) X_{t} \text{ for } t \ge 2, t \notin N
\overline{u}_{t} = X_{t} + h \text{ for } t \ge 2, t \in N,$$
(2)

where $N \subset \mathbb{N}$ is a sparse set, $\beta \in (0; 1)$ describes the speed of updating of the aspiration level and h > 0 is a constant by which the aspiration level is increased in a period $t \in N$.

Finally, denote by S and S' the set of paths, on which the case-based rule is applied in combination with (1) and (2), respectively:

$$S = \left\{ \begin{split} \omega \in S_1 \mid & \bar{u}_1 = \bar{u}_1 \\ \bar{u}_t = \beta \bar{u}_{t-1} + (1-\beta) X_t \text{ for } t \ge 2 \\ \end{bmatrix} \\ S' = \left\{ \begin{split} \omega \in S_1 \mid & \bar{u}_t = \beta \bar{u}_{t-1} + (1-\beta) X_t \text{ for } t \ge 2, t \notin N \\ \bar{u}_t = X_t + h \text{ for } t \ge 2, t \in N, \end{split} \right\}$$

Let P and P' be probability measures on S and on S', respectively which are consistent with $(\Pi_a)_{a \in A}$, as in Gilboa and Schmeidler (1996, p.11).

Denote by

$$\pi\left(a\right) = \lim_{t \to \infty} \frac{\left|C_t\left(a\right)\right|}{t}$$

the frequency with which a is chosen, if the limit on the right hand side exists. Usually, this frequency will be path-dependent.

Optimal behavior in the limit means that

$$\pi\left(\arg\max_{a\in A}\mu_a\right) = 1$$

almost surely holds. For A finite and a similarity function:

$$s(a; a') = 1, \text{ if } a = a'$$
 (3)
 $s(a; a') = 0, \text{ else},$

Gilboa and Schmeidler (1996) show that (2) implies optimal behavior in the above sense. For

(1), Gilboa and Schmeidler (1996) demonstrate that for each $\varepsilon > 0$, there is a \bar{u}_0 , so that for all $\bar{u} \ge \bar{u}_0$, expected utility maximization obtains with probability of at least $(1 - \varepsilon)$.

The following two sections analyze the implications of a non-degenerate similarity function on learning.

3 Learning with a Concave Similarity Function

Assumption 1

$$s(a;a') = f(||a-a'||)$$

with $f' < 0$ and $f'' < 0$, as illustrated in figure 1.

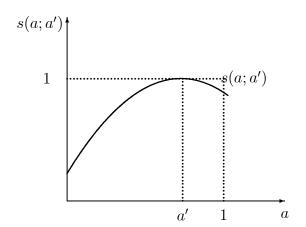


Figure 1

The concavity of s implies that the greater the distance of two acts a' and a'' from the reference act a, the more the decision-maker distinguishes between a' and a'' with respect to their similarity to a.

Let $a_1 = \bar{a}$ and let $u_1(\bar{a})$ denote the utility realization of portfolio \bar{a} in period 1.

Proposition 1 Let assumption 1 hold. Define
$$\tilde{S}$$
 as
 $\tilde{S} = \{\omega \in S \mid u_1(\bar{a}) \leq \max\{\mu_0; \mu_1\}\}.$
For each $\varepsilon > 0$ there exists a \bar{u}_0 such that for any $\bar{u}_1 > \bar{u}_0$:
 $P\left\{\omega \in S \mid \exists \pi \left(\arg\max_{a \in \{0;1\}} \mu_a\right) = 1\right\} \ge (1 - \varepsilon) P\left(\tilde{S}\right)$
 $P\left\{\omega \in S \mid \frac{\pi(0)}{\pi(1)} = \frac{\mu_1 - u_1(\bar{a})}{\mu_0 - u_1(\bar{a})} \quad and \\ \pi(a) = 0 \quad for a \notin \{0;1\}\right\} = 1 - P\left(\tilde{S}\right),$
holds

holds.

Hence, for concave similarity functions optimal behavior fails to emerge under rule (1). Only the corner acts 1 and 0 are chosen infinitely often. On \tilde{S} , the better of these two acts is satisfactory in the limit and is chosen with frequency 1 with arbitrarily high probability. On $S \setminus \tilde{S}$, the limit aspiration level exceeds the mean utilities of 1 and 0. Both acts are therefore chosen with positive frequencies.

Proposition 2 Let assumption 1 hold. Assume that either

$$\bar{u} > \max_{u \in \Delta_{\bar{a}}} u$$

or $1 \in N$. Define \tilde{S}' as

$$\tilde{S}' = \left\{ \omega \in S' \mid u_1\left(a\right) \le \max\left\{\mu_0; \mu_1\right\} \right\}.$$

Then:

$$P\left\{ \begin{aligned} \omega \in S' \mid \exists \pi \left(\arg \max_{a \in \{0;1\}} \mu_a \right) &= 1 \right\} &= P\left(\tilde{S}'\right) \\ for \ each \ a \in A \quad \exists \pi (a) \ such \ that \\ \omega \in S' \mid \frac{\pi(0)}{\pi(1)} &= \frac{\mu_1 - u_1(\bar{a})}{\mu_0 - u_1(\bar{a})} \quad and \\ \pi (a) &= 0 \qquad for \ a \notin \{0;1\} \end{aligned} \right\} = 1 - P\left(\tilde{S}'\right),$$

holds.

Two effects prevent efficient learning. First, the strict monotonicity of the similarity function and the initially high aspiration level imply that \bar{a} is abandoned in the second period. Since s is concave, only corner acts are chosen after t = 2.

Second, although \bar{a} is never chosen again, its initial realization influences the evolution of the aspiration level. Especially, if $u_1(\bar{a}) > \max{\{\mu_0; \mu_1\}}$,

$$\lim_{t \to \infty} \bar{u}_t = u_1(\bar{a}) > \max\left\{\mu_0; \mu_1\right\}$$

and both a = 0 and a = 1 seem unsatisfactory in the limit.

4 Introducing Convexities into the Similarity Function

The proof of proposition 1 heavily relies on the concavity of the similarity function. I, therefore, explore how results change if the similarity function is convex over some range of values.

Assumption 2 Let

$$s(a; a') = f(||a - a'||)$$

with $f' < 0$, $f'' < 0$ for $||a - a'|| \le \frac{1}{l}$ and some $l > 1$. Let
 $f(||a - a'||) = 0$,
for $||a - a'|| \ge \frac{1}{l}$.

A convex similarity function implies that the greater the distance of two acts a' and a'' from the referential act a, the less is the decision-maker able to distinguish between a' and a'' with respect to their similarity to a. When $l \to \infty$, s approaches the similarity function (3) considered by Gilboa and Schmeidler (1996).

Assumption 3 Let $a_1 = 0$ and let

$$a_{t} = \arg\min_{a \in \arg\max U_{t}(a)} \left\{ \left| \arg\max_{a \in [0,1]} \left\{ U_{t}\left(a\right) \right\} - a_{t-1} \right| \right\}$$

Assumption 3 says that when indifferent among several acts, the decision-maker chooses the act closest to the act chosen last.

Figure 2 illustrates assumptions 2 and 3.

The set of paths consistent with (2) and assumptions 2 and 3 is denoted by:

$$S'' = \left\{ \omega \in S' \mid \begin{array}{c} a_1 = 0 \\ a_t = \arg \min_{a \in \arg \max U_t(a)} \left\{ \left| \arg \max_{a \in [0;1]} \left\{ U_t(a) \right\} - a_{t-1} \right| \right\} \end{array} \right\}.$$

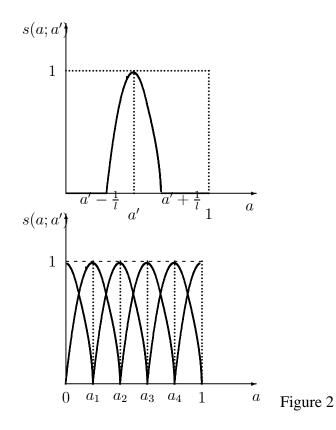
Proposition 3 For all $\bar{u}_1 \in \mathbb{R}$ and all $\beta \in (0; 1)$,

$$P\left\{\omega \in S'' \mid \exists \pi \left(\arg\max_{a} \left\{\mu_{a} \mid a \in \left\{0; \frac{1}{l}; \frac{2}{l} \dots \frac{l-1}{l}; 1\right\}\right\}\right) = 1\right\} = 1.$$

Introducing convexities into the similarity function obviously improves the limit choice. Note, however that although

$$\lim_{l \to \infty} \left(\arg \max_{a} \left\{ \mu_a \mid a \in \left\{ 0; \frac{1}{l}; \frac{2}{l} \dots \frac{l-1}{l}; 1 \right\} \right\} \right) = \arg \max_{a \in [0;1]} \mu_a$$

optimal learning cannot obtain because A is uncountable. However, for sufficiently large l, the investor's limit choice approximates expected utility maximization with an arbitrary degree of accuracy.



5 Conclusion

It is beyond the scope of this note to explore whether similarity is better represented by a convex or concave function. Intuitively, it seems that similarity perceptions are more vague for distant objects, hence that convexity is a more appropriate assumption. If convexity of the similarity function is indeed the more relevant case, then my findings would clearly support Gilboa and Schmeidler's claim that case-based decision-makers behave optimally in the limit.

Appendix

Proof of Proposition 1

Denote

$$V_{t}\left(a
ight)=:\sum_{ au\in C_{t}\left(a
ight)}\left[u_{ au}\left(a
ight)-ar{u}_{t}
ight]$$
 ,

with

$$\sum_{\tau \in C_{t}(a)} \left[u_{\tau}\left(a\right) - \bar{u}_{t} \right] = 0, \text{ if } C_{t}\left(a\right) = \emptyset.$$

The proof proceeds in three steps. First, it is shown that $a_2 \in \{0; 1\}$. Second, it is demonstrated that $a_t \in \{0; 1\}$ for all $t \ge 2$. In step 3, applying theorem 1 of Gilboa and Schmeidler (1996) shows that optimal behavior obtains on \tilde{S} and theorem 1 of Gilboa and Pazgal (2001) allows to derive the result on $S \setminus \tilde{S}$.

Step 1

In t = 2,

$$U_{2}(\bar{a}) = V_{2}(\bar{a}) = u_{1}(\bar{a}) - \beta \bar{u}_{1} - (1 - \beta) u_{1}(\bar{a}) = \beta [u_{1}(\bar{a}) - \bar{u}_{1}] < 0,$$

whereas:

$$U_{2}(a) = V_{2}(\bar{a}) s(a; \bar{a}) < 0.$$

Since $s(a; \bar{a})$ is strictly decreasing,

$$\arg \max_{a \in [0;1]} U_2(a) \in \{0;1\}.$$

Remark 1 Let $C_{\tau}(a) \geq 1$. Let $\bar{u}_{\tau} > X_{\tau}(a)$ and $a_{\tau} \neq a$. $\bar{u}_{\tau+1} = \beta X_{\tau+1} + (1-\beta) \bar{u}_{\tau} \geq \beta X_{\tau}(a) + (1-\beta) \bar{u}_{\tau}$ and $\bar{u}_{\tau} > X_{\tau}(a)$ imply $\bar{u}_{\tau+1} \geq X_{\tau}(a)$, or

$$\begin{aligned} u_{\tau+1} &> \Lambda_{\tau}(a), \\ V_t(a) &< 0 \end{aligned}$$
for each $t \geq \tau$ such that $a_k \neq \bar{a}$ for all $\tau \leq k < t$.

Step 2

Assume w.l.g. that $a_2 = 0$, i.e.

$$\min_{a \in [0;1]} s\left(a; \bar{a}\right) = 0$$

If $a_{\tau} = 0$ for all $t > \tau \ge 2$,

$$U_t(a) = s(a; \bar{a}) V_t(\bar{a}) + s(a; 0) V_t(0)$$

holds. If $V_t(0) \ge 0$, $a_t = 0$, since

$$U_t(a) = s(a; \bar{a}) V_t(\bar{a}) + s(a; 0) V_t(0) \le$$

$$\le s(0; \bar{a}) V_t(\bar{a}) + V_t(0) = U_t(0).$$

If $V_t(0) < 0$,

$$U_t(a) = s(a; \bar{a}) V_t(\bar{a}) + s(a; 0) V_t(0)$$

is convex, since $V_t(\bar{a}) < 0$, $V_t(0) < 0$ and s is concave. Therefore,

$$\arg\max_{a\in[0,1]} U_t(a) \in \{0,1\}$$

Let $a_{\overline{t}'} = 1$. \overline{t}' is a.s. finite. If $a_{\tau} = 1$ for all $t > \tau \ge \overline{t}'$,

$$U_t(a) = s(a; \bar{a}) V_t(\bar{a}) + s(a; 0) V_t(0) + s(a; 1) V_t(1)$$

 $V_{\bar{t}'}(0) < 0$ implies $V_t(0) < 0$, see remark 1.

If $V_t(1) \leq 0$ holds, $U_t(a)$ is convex and $a_t \in \{0, 1\}$.

Let $V_t(1) > 0$. Since

$$V_{t}(1) > 0 > \max \{V_{t}(\bar{a}); V_{t}(0)\}$$

 $X_{t} = X_{t} (1)$. Let

$$\tilde{t} = \max\left\{ \bar{t}'; \tau < t \mid V_{\tau}(1) \le 0, a_{\tau} = 1, V_{\tau+1}(1) > 0 \right\}.$$
(4)

Lemma 4 $\bar{u}_t > \bar{u}_{\tilde{t}}$.

Proof of lemma 4:

Since $V_{\tilde{t}}(1) \leq 0, X_{\tilde{t}}(1) - \bar{u}_{\tilde{t}} \leq 0$ holds. $V_{\tilde{t}+1}(1) > 0$ implies $X_{\tilde{t}+1}(1) - \bar{u}_{\tilde{t}+1} > 0 > \max \{ X_{\tilde{t}+1}(0) - \bar{u}_{\tilde{t}+1}; X_{\tilde{t}+1}(\bar{a}) - \bar{u}_{\tilde{t}+1} \}.$

Hence, $X_{\tilde{t}+1} = X_{\tilde{t}+1}(1)$ and

$$\bar{u}_{\tilde{t}+1} = \beta \bar{u}_{\tilde{t}} + (1-\beta) X_{\tilde{t}+1}(1)$$

Since $X_{\tilde{t}+1}(1) - \bar{u}_{\tilde{t}+1} > 0$,

$$\bar{u}_{\tilde{t}+1} > \bar{u}_{\tilde{t}}$$

follows.

At $\tilde{t}+2$, $V_{\tilde{t}+2}\left(1\right)>0$ holds, hence $X_{\tilde{t}+2}=X_{\tilde{t}+2}\left(1\right)>\bar{u}_{\tilde{t}+2}$ and $\bar{u}_{\tilde{t}+2}=\beta\bar{u}_{\tilde{t}+1}+\left(1-\beta\right)X_{\tilde{t}+2}\left(1\right).$

Therefore,

$$\bar{u}_{\tilde{t}+2} > \bar{u}_{\tilde{t}+1}$$

Hence, by induction, $\bar{u}_t > \bar{u}_{\tilde{t}}$.

At t,

$$U_{t}(1) = s(1; \bar{a}) V_{t}(\bar{a}) + V_{t}(1).$$
10

Hence, $a_t = 1$ if

$$s(1;\bar{a}) V_t(\bar{a}) + V_t(1) \ge s(a;\bar{a}) V_t(\bar{a}) + s(a;0) V_t(0) + s(a;1) V_t(1)$$
(5)

for all $a \in [0; 1]$. Rewrite (5) as

$$V_{t}(1)(1 - s(a; 1)) - s(a; 0) V_{t}(0) + [s(1; \bar{a}) - s(a; \bar{a})] V_{t}(\bar{a}) \ge 0$$

$$V_{t}(1)(1 - s(a; 1)) - s(a; 0)(\bar{t}' - 2) [X_{\tilde{t}}(0) - \bar{u}_{\tilde{t}}] + [s(1; \bar{a}) - s(a; \bar{a})] [u_{1}(\bar{a}) - \bar{u}_{\tilde{t}}]$$

$$+ [\bar{u}_{t} - \bar{u}_{\tilde{t}}] [s(a; 0)(\bar{t}' - 2) - s(1; \bar{a}) + s(a; \bar{a})] \ge 0.$$

Since $s(\cdot; \cdot)$ is concave,

$$\underset{a \in [0;1]}{\arg\min} s(a;0) (\bar{t}'-2) + s(a;\bar{a}) \in \{0;1\} .$$

$$s(1;0) (\bar{t}'-2) + s(1;\bar{a}) = s(1;\bar{a})$$

and

$$s(0;0)(\bar{t}'-2) + s(0;\bar{a}) = (\bar{t}'-2) + s(0;\bar{a}) > 1 + s(0;\bar{a}) > s(1;\bar{a}).$$

It follows that:

$$\min_{a \in [0;1]} \left[\bar{u}_t - \bar{u}_{\tilde{t}} \right] \left[s\left(a;0\right) \left(\bar{t}' - 2 \right) - s\left(1;\bar{a}\right) + s\left(a;\bar{a}\right) \right] = 0.$$

Therefore,

$$\begin{aligned} U_t(1) - U_t(a) &\geq V_t(1) \left(1 - s(1;a) \right) - s(a;0) V_{\tilde{t}}(0) + \left[s(1;\bar{a}) - s(a;\bar{a}) \right] V_{\tilde{t}}(\bar{a}) \\ &> V_{\tilde{t}}(1) \left(1 - s(a;1) \right) - s(a;0) V_{\tilde{t}}(0) + \left[s(1;\bar{a}) - s(a;\bar{a}) \right] V_{\tilde{t}}(\bar{a}) \\ &= U_{\tilde{t}}(1) - U_{\tilde{t}}(a) \geq 0 \end{aligned}$$

for each $a \in [0; 1]$, since $V_{\tilde{t}}(1) \leq 0$ and $a_{\tilde{t}} = 1$. Hence, $a_t = 1$.

Analogously, if $a_{t-1} = 0$ and $V_t(0) < 0$, $a_t \in \{0, 1\}$. For $V_t(0) \ge 0$,

$$U_t(0) - U_t(a) = V_t(0) (1 - s(a; 0)) - s(a; 1) V_t(1) + [s(0; \bar{a}) - s(a; \bar{a})] V_t(\bar{a}) \ge 0,$$

since $V_t(0)(1 - s(a; 0)) \ge 0$, $V_t(1) < 0$, $V_t(\bar{a}) < 0$ and $s(0; \bar{a}) - s(a; \bar{a}) < 0$ for all $a \in [0; 1]$. Hence, $a_t = 0$.

Reasoning by induction implies

$$P\{\omega \in S \mid a_t \in \{0; 1\} \text{ for each } t > 1\} = 1.$$
(6)

Step 3

On \tilde{S} , theorem 1 of Gilboa and Schmeidler (1996) applies. Hence, there exists a \bar{u}_0 such that for each $\bar{u}_1 \geq \bar{u}_0$:

$$P\left\{\omega \in S \mid \exists \pi \left(\arg \max_{a \in \{0;1\}} \mu_a\right) = 1\right\} \ge (1 - \varepsilon) P\left(\tilde{S}\right).$$

If $u_1(\bar{a}) > \max{\{\mu_1; \mu_0\}}$, $\lim_{t\to\infty} \bar{u}_t = u_1(\bar{a})$ almost surely. Hence, on almost each ω , there is a $T(\omega)$ such that

$$\bar{u}_t > \max\left\{\mu_1; \mu_0\right\} + \xi$$

for each $t > T(\omega)$. Therefore, a = 0 and a = 1 are almost surely chosen infinitely often. Theorem 1 in Gilboa and Pazgal (2001) implies:

$$\frac{\pi(0)}{\pi(1)} = \frac{\mu_1 - u_1(\bar{a})}{\mu_0 - u_1(\bar{a})}$$

S\\\tilde{S}-a.s.. By (6), \pi (a) = 0 for \alpha \notices \{0; 1\}.\Box

Proof of Proposition 2

The proof proceeds in three steps. Step 1 demonstrates that $a_2 \in \{0, 1\}$. Step 2 shows that $a_t \in \{0, 1\}$ for $t \ge 2$. Step 3 uses theorem 2 of Gilboa and Schmeidler (1996) and theorem 1 of Gilboa and Pazgal (2001) to derive the result.

Step 1

At t = 2, either

$$U_{2}(\bar{a}) = V_{2}(\bar{a}) = u_{1}(\bar{a}) - \beta \bar{u}_{1} - (1 - \beta) u_{1}(\bar{a}) = \beta [u_{1}(\bar{a}) - \bar{u}_{1}] < 0$$

or

$$U_2(\bar{a}) = V_2(\bar{a}) = u_1(\bar{a}) - X_2 - h = -h < 0$$

holds. The strict monotonicity of s implies $a_t \in \{0, 1\}$.

Remark 2 Remark 1 applies, since for $(\tau + 1) \notin N$, $\bar{u}_{\tau+1}$ is adapted as under (1), whereas for $0 \in N$,

$$\bar{u}_{\tau+1} = X_{\tau+1} + h > X_{\tau+1} \ge X_{\tau+1}(a)$$

holds.

Step 2

As in the proof of proposition 1, it can be shown that

$$P \{ \omega \in S_1 \mid a_t \in \{0, 1\} \text{ for each } t > 1 \} = 1.$$

This follows from remark 2 and from the definition of \tilde{t} in (4). Note that (4) implies

$$\tilde{t} + 1, ... \tilde{t}' \notin N,$$

since for $t \in N$, $V_t(a_{t-1}) < 0$.

Step 3

On \tilde{S}_1 , theorem 2 of Gilboa and Schmeidler (1996) applies. Therefore,

$$\pi\left(\arg\max_{a\in\{0;1\}}\mu_a\right) = 1$$

almost surely obtains.

On $S_1 \setminus \tilde{S}_1$, $\bar{u}_t \to u_1(\bar{a})$. Hence, a.s. there is a period $T(\omega)$ such that

$$\left|\bar{u}_t - u_1\left(\bar{a}\right)\right| < \zeta$$

for each $t > T(\omega)$ except on a sparse set of periods for an arbitrary ζ . Hence, the acts 0 and 1 are chosen an infinite number of times. But since now

$$\lim_{t \to \infty} \bar{u}_t = u_1(\bar{a}) > \max\left\{\mu_0; \mu_1\right\}$$

theorem 1 of Gilboa and Pazgal (2001) implies:

$$\frac{\pi(0)}{\pi(1)} = \frac{\mu_1 - u_1(\bar{a})}{\mu_0 - u_1(\bar{a})}.$$

Proof of Proposition 3

Rule (2) implies

$$U_{\bar{t}}\left(0\right) = V_{\bar{t}}\left(0\right) < 0$$

for some finite $\bar{t} > 0$. By assumption 2,

$$U_{\bar{t}}(a) = 0 > U_{\bar{t}}(a') \text{ for all } a \ge \frac{1}{l} \text{ and } a' < \frac{1}{l}.$$

Hence, $a_{\bar{t}+1} = \frac{1}{l}$ by assumption 3. Remark 2 applies here as well. Hence, for a finite $\hat{t} > \bar{t}$,

$$U_{\hat{t}}\left(\frac{1}{l}\right) < 0$$

and

$$U_{\hat{t}}(a) = 0 > U_{\hat{t}}(a') \text{ for all } a \ge \frac{2}{l} \text{ and } a' < \frac{2}{l}$$

from assumption 2. Hence, $a_{\hat{t}} = \frac{2}{l}$, etc.

Once $C_t\left(\frac{k}{l}\right) \ge 1$ obtains for all k = 0...l,

$$U_{t}(a) = \sum_{i=0}^{l} V_{t}\left(\frac{i}{l}\right) s\left(a;\frac{i}{l}\right)$$
$$= V_{t}\left(\frac{k}{l}\right) s\left(a;\frac{k}{l}\right) + V_{t}\left(\frac{k-1}{l}\right) s\left(a;\frac{k-1}{l}\right),$$

for $a \in \left[\frac{k-1}{l}; \frac{k}{l}\right]$. According to remark 2, $V_t\left(\frac{k}{l}\right) > 0$ can hold for at most one $k \in \{0; ...l\}$. If $V_t\left(\frac{k}{l}\right) > 0$,

then $a_t = a_{t-1} = \frac{k}{l}$, since $V_t\left(\frac{k}{l}\right) > V_t\left(\frac{k}{l}\right) s\left(a;\frac{k}{l}\right) + V_t\left(\frac{k-1}{l}\right) s\left(a;\frac{k-1}{l}\right)$ for all $a \in \left[\frac{k-1}{l};\frac{k}{l}\right]$ and $V_t\left(\frac{k}{l}\right) > 0 \ge V_t\left(\frac{k'}{l}\right) s\left(a;\frac{k'}{l}\right) + V_t\left(\frac{k'-1}{l}\right) s\left(a;\frac{k'-1}{l}\right)$ for all $k' \ne k$ and all $a \in [0;1]$ hold. If $\max\left\{V_t\left(\frac{k}{l}\right);V_t\left(\frac{k-1}{l}\right)\right\} < 0$, then $U_t(a)$ is convex for $a \in \left[\frac{k-1}{l};\frac{k}{l}\right]$. Hence, $\arg\max_{a \in \left[\frac{k-1}{l};\frac{k}{l}\right]} U_t(a) \in \left\{\frac{k}{l};\frac{k-1}{l}\right\}$ and

$$\arg\max_{a\in A} U_t(a) \in \left\{0; \frac{1}{l}; \dots, \frac{k}{l}; \dots, 1\right\} \text{ for every } t.$$

The result then follows from theorem 2 of Gilboa and Schmeidler (1996).■

References

Gilboa, I., Pazgal, A. (2001). "Cumulative Discrete Choice", Marketing Letters12: 118-130.Gilboa, I., Schmeidler, D. (1995). "Case-Based Decision Theory", Quarterly Journal of Economics 110: 605-639.

Gilboa, I., Schmeidler, D. (1996). "Case-Based Optimization", Games and Economic Behavior 15: 1-26.

Gilboa, I., Schmeidler, D. (1997). "Act Similarity in Case-Based Decision Theory", Economic Theory 9: 47-61.

Nr.	Author	Title	Nr.	Author	Title
)4-43	Fabian Bornhorst Andrea Ichino Oliver Kirchkamp	How do People Play a Repeated Trust Game? Experimental Evidence	04-33	Christopher Koch	Haftungserleichterungen bei der Offenlegung von Zukunftsinformationen in den USA
	Karl H. Schlag Eyal Winter		04-32	Oliver Kirchkamp J. Philipp Reiß	The overbidding-myth and the underbidding-bias in first-price auctions
-42	Martin Hellwig	Optimal Income Taxation, Public-Goods Provision and Public-Sector Pricing: A Contribution to the Foundations of Public Economics	04-31	Alexander Ludwig Alexander Zimper	Investment Behavior under Ambiguity: The Case of Pessimistic Decision Makers
-41	Thomas Gschwend	Comparative Politics of Strategic Voting: A Hierarchy of Electoral Systems	04-30	Volker Stocké	Attitudes Toward Surveys, Attitude Accessibility and the Effect on Respondentsí Susceptibility to Nonresponse
-40	Ron Johnston Thomas Gschwend Charles Pattie	On Estimates of Split-Ticket Voting: EI and EMax	04-29	Alexander Ludwig	Improving Tatonnement Methods for Solving Heterogeneous Agent Models
-39	Volker Stocké	Determinants and Consequences of Survey Respondentsí Social Desirability Beliefs about	04-28	Marc Oliver Rieger Mei Wang	Cumulative Prospect Theory and the St.Petersburg Paradox
-38	Siegfried K. Berninghaus	Racial Attitudes Restricting the benefit flow from neighbors:	04-27	Michele Bernasconi Oliver Kirchkamp	Do fiscal variables affect fiscal expectations? Experiments with real world and lab data
+-30	Marion Ott Bodo Vogt	Experiments on network formation	04-26	Paolo Paruolo Daniel Schunk	Explaining heterogeneity in utility functions by
4-37	Christopher Koch	Behavioral Economics und die Unabhängigkeit des	04-20	Cornelia Betsch	individual differences in preferred decision modes
	x	Wirtschaftsprüfers - Ein Forschungsüberblick	04-25	Martin Weber Jens Wuestemann	Bedeutung des Börsenkurses im Rahmen der Unternehmensbewertung
4-36	Christopher Koch	Behavioral Economics und das Entscheidungsverhalten des Wirtschaftsprüfers - Ein Forschungsüberblick	04-24	Hannah Hörisch	Does foreign aid delay stabilization
-35	Christina Reifschneider	Behavioral Law and Economics: Überlegungen zu den Konsequenzen moderner Rationalitätskonzepte für die Gestaltung informationellen	04-23	Daniel Schunk Joachim Winter	The Relationship Between Risk Attitudes and Heuristics in Search Tasks: A Laboratory Experiment
	6. 6. IV D	Kapitalmarktrechts	04-22	Martin Hellwig	Risk Aversion in the Small and in the Large When Outcomes Are Multidimensional
-34	Siegfried K. Berninghaus Karl-Martin Ehrhart Marion Ott Bodo Vogt	Searching for "Stars" - Recent Experimental Results on Network Formation -	04-21	Oliver Kirchkamp Eva Poen J. Philipp Reiß	Bidding with Outside Options

Nr.	Author	Title
04-20	Jens Wüstemann	Evaluation and Response to Risk in International Accounting and Audit Systems: Framework and German Experiences
04-19	Cornelia Betsch	Präferenz für Intuition und Deliberation (PID): Inventar zur Erfassung von affekt- und kognitionsbasiertem Entscheiden
04-18	Alexander Zimper	Dominance-Solvable Lattice Games
04-17	Volker Stocké Birgit Becker	DETERMINANTEN UND KONSEQUENZEN DER UMFRAGEEINSTELLUNG. Bewertungsdimensionen unterschiedlicher Umfragesponsoren und die Antwortbereitschaft der Befragten
04-16	Volker Stocké Christian Hunkler	Die angemessene Erfassung der Stärke und Richtung von Anreizen durch soziale Erwünschtheit
04-15	Elena Carletti Vittoria Cerasi Sonja Daltung	Multiple-bank lending: diversification and free-riding in monitoring
04-14	Volker Stocké	The Interdependence of Determinants for the Strength and Direction of Social Desirability Bias in Racial Attitude Surveys
04-13	Christopher Koch Paul Fischbeck	Evaluating Lotteries, Risks, and Risk-mitigation Programs Ño A Comparison of China and the United States
04-12	Alexander Ludwig Torsten Sløk	The relationship between stock prices, house prices and consumption in OECD countries
04-11	Jens Wüstemann	Disclosure Regimes and Corporate Governance
04-10	Peter Albrecht Timo Klett	Referenzpunktbezogene risikoadjustierte Performancemaße: Theoretische Grundlagen
04-09	Alexander Klos	The Investment Horizon and Dynamic Asset Allocation - Some Experimental Evidence

Nr.	Author	Title
04-08	Peter Albrecht Cemil Kantar Yanying Xiao	Mean Reversion-Effekte auf dem deutschen Aktienmarkt: Statistische Analysen der Entwicklung des DAX-KGV
04-07	Geschäftsstelle	Jahresbericht 2003
04-06	Oliver Kirchkamp	Why are Stabilisations delayed - an experiment with an application to all pay auctions
04-05	Karl-Martin Ehrhart Marion Ott	Auctions, Information, and New Technologies
04-04	Alexander Zimper	On the Existence of Strategic Solutions for Games with Security- and Potential Level Players
04-03	Alexander Zimper	A Note on the Equivalence of Rationalizability Concepts in Generalized Nice Games
04-02	Martin Hellwig	The Provision and Pricing of Excludable Public Goods: Ramsey-Boiteux Pricing versus Bundling
04-01	Alexander Klos Martin Weber	Portfolio Choice in the Presence of Nontradeable Income: An Experimental Analysis
03-39	Eric Igou Herbert Bless	More Thought - More Framing Effects? Framing Effects As a Function of Elaboration
03-38	Siegfried K. Berninghaus Werner Gueth Annette Kirstein	Trading Goods versus Sharing Money - An Experiment Testing Wether Fairness and Efficiency are Frame Dependent
03-37	Franz Urban Pappi Thomas Gschwend	Partei- und Koalitionspräferenzen der Wähler bei der Bundestagswahl 1998 und 2002
03-36	Martin Hellwig	A Utilitarian Approach to the Provision and Pricing of Excludable Public Goods
03-35	Daniel Schunk	The Pennsylvania Reemployment Bonus Experiments: How a survival model helps in the analysis of the data

SONDERFORSCHUNGSBereich 504 WORKING PAPER SERIES