

University of Mannheim / Department of Economics

Working Paper Series

Ex-post Optimal Knapsack Procurement

Felix Jarman Vincent Meisner

Working Paper 15-02

January 2015

Ex-post Optimal Knapsack Procurement∗

Felix Jarman† Vincent Meisner‡

January 12, 2015

Abstract

We consider a budget-constrained mechanism designer who wants to
select an optimal subset of projects to maximize her utility. Project
costs are private information and the value the designer derives from
their provision may vary. In this allocation problem the choice of
projects - both which and how many - is endogenously determined by
the mechanism. The designer faces hard ex-post constraints: The par-
ticipation and budget constraint must hold for each possible outcome
while the mechanism must be implementable in dominant strategies.
We derive the class of optimal mechanisms that are characterized by
cutoff functions. These cutoff functions exhibit properties that allow
an implementation through a descending clock auction. Only in the
case of symmetric projects price clocks descend synchronously such
that always the cheapest projects are executed. However, the asym-
metric case, where values or costs are asymmetrically distributed, fea-
tures a novel tradeoff between quantity and quality. Interestingly, this
tradeoff mitigates the distortion due to the informational asymmetry
compared to environments where quantity is exogenous.

JEL-Classification: D02, D44, D45, D82, H57.
Keywords: Mechanism Design, Knapsack, Budget, Procurement, Auction

∗We thank Ludwig Ensthaler, Thomas Giebe, Hans Peter Grüner, Doh-Shin Jeon,
Volker Nocke, Thomas Tröger and participants of the 10th SFB Young Researchers Work-
shop, the ENTER MaCCI-TSE Workshop, the UECE Lisbon Meetings 2014, and the 9th
BiGSEM workshop for useful comments and suggestions.
†CDSE, University of Mannheim, felix.jarman@gess.uni-mannheim.de
‡CDSE, University of Mannheim, vincent.meisner@gess.uni-mannheim.de

1

1 Introduction

We study the problem of an institution that can spend a fixed budget on
a variable number of projects. For instance, a development fund desires to
distribute money to nonprofit projects with non-monetary benefits. Even if
the benefit outweighs the cost for all available projects, the budget prohibits
that all projects’ costs can be covered. Therefore, the fund’s problem is to
select an affordable subset of maximal aggregate quality. Under complete
information this is a variant knapsack problem, well known in computer sci-
ence.1 In economic applications the assumption of complete information is
generally problematic. Here, a project might desire to get funding beyond
the necessary minimum. For example, a project could spend money on extra
equipment that is convenient for the project’s staff but has no value for the
designer. When costs are private information a strategic game is induced.
The mechanism designer, i.e. the fund, can set the rules for this game and
the projects act as economic agents in this environment. Essentially, we
view this problem as an “up to possibly n-units” procurement problem with
n agents with single-unit supply where the demand is determined after ob-
serving projects’ reports and under a budget constraint.

Importantly, the budget and participation constraints are imposed ex-post,
i.e. an applicant cannot be forced to conduct a project when the assigned
funds are insufficient and the sum of transfers must not exceed the budget
for any cost realization. In the example of a development fund, the nonprofit
nature of the projects prohibits acquiring money on the market. Therefore
underfunded projects are not executed, making their participation constraint
ex-post.2 Imposing the budget constraint to hold ex-post comes natural, as
budgets are usually fixed. Our results are applicable to settings in which
the designer may or may not value residual money. We focus on the first
case. In addition, we examine mechanisms that are implementable in dom-
inant strategies. Dominant strategy implementable mechanisms are widely
used in practice as they are easy to explain and not prone to manipulation
or misspecification of beliefs. For similar reasons we restrict attention to
deterministic mechanisms. Deterministic mechanisms obviate the need for

1A classical combinatorial problem: A set of items is assigned values and weights. The
knapsack should be filled with the maximal value, but can carry only up to a given weight.

2Alternatively, think of a scientist applying for a research grant at some science foun-
dation in order to buy a data set.

2

a credible randomization device and are therefore more easily applicable in
practice.

This paper not only helps in understanding a class of economically rele-
vant problems, its framework also presents itself with a novel methodological
challenge. The ex-post nature of both the participation and the budget con-
straint precludes the standard pointwise optimization techniques à la Myer-
son (1981). By focusing on dominant strategy implementable deterministic
mechanisms, we can reduce the problem to finding a set of optimal cutoff
functions. We call the corresponding mechanisms “z-mechanism”. A z-
mechanism is characterized by a set of functions {zi} that only depend on
the costs of non-executed projects and weakly increase in those costs. The
function zi is a cutoff such that project i is conducted whenever i’s cost report
falls below zi.

Furthermore we investigate symmetric and asymmetric environments sepa-
rately and propose implementations. First, we focus on the case where all
projects are ex-ante symmetric and only cost is independent private infor-
mation. Having characterized the optimal mechanism as a z-mechanism, it
follows that it is optimal to rank projects according to their cost and green-
light the cheapest ones. The number of greenlighted projects is then endoge-
nously determined by the budget and the cost reports of all participating
projects. Second, we examine the case of ex-ante asymmetric projects, i.e.
costs are drawn from different distributions and/or project values differ. In
applications, the designer may prefer some projects over others and might
have different information over cost distributions. We restrict attention to
the two project case because it conveys the main insights while retaining
tractability. Interestingly, the optimal allocation of the symmetric case does
not easily generalize to the asymmetric case. That is, we do not simply
greenlight projects in order of their virtual values.3 We show that there are
instances where out of two rival projects optimally the project with lower
virtual value is chosen. The cause underlying this result is that the amount
of units procured is endogenous. As a consequence, incentive compatibility
constraints create a tradeoff between quantity and quality of the procured
projects.

3As a fist step, rewriting the problem involves expressing expected transfers by the
allocation function. As the designer maximizes expected payoff we can employ the pro-
curement analogue of Myerson’s notion of virtual values.

3

In auction theory it is a known result (e.g. Luton and McAfee, 1986) that
when only one unit is procured out of identical projects among agents with
asymmetrically distributed cost, it is not necessarily the lower cost project
that is greenlighted - but the one with lowest virtual cost. Broadly speaking,
the designer discriminates against stochastically stronger projects. Notably,
the quantity-quality tradeoff introduced above mitigates this discrimination.

Reducing the set of candidates for optimal mechanisms to z-mechanisms en-
ables us to implement any optimal allocation with an appropriately designed
descending clock auction. Individual clock prices determine the transfer paid
to each active project and continuously decrease. In the symmetric case, all
clocks run down synchronously. Therefore, projects drop out in order of their
costs until all active projects can be financed.

As the optimal mechanism in the asymmetric case does not always allocate
in order of virtual value, we cannot adjust the descending clock auction in
the usual way where clocks are asynchronous such that the virtual value
is kept equal. Instead, the descending-clock implementation of the optimal
allocation includes individual clocks stopping completely at certain times.
This effect emerges so that the probability of executing a larger number of
projects is not decreased too much, which comes at the cost that in some cases
the provision is allocated to an “inferior project” in terms of the designer’s
payoff. Put differently, the incentive constraints prohibit the designer from
always allocating to the better project while holding the probability to exe-
cute a larger number of projects constant. This is where the quantity-quality
tradeoff kicks in.

Other than distribution of monetary transfers, this framework matches a
whole range of allocation problems. In general, our mechanism is applicable
to all problems, in which a designer needs to allocate a divisible but fixed
quantity among agents. For instance, time on a production facility or on
a supercomputer can be allocated with our mechanism. Similarly, consider
the allocation of payload on a freighter or a space shuttle. Clearly, the
capacity of a space shuttle is limited. The problem of optimally allocating
the capacity and incentivizing projects to reduce payload is economically
relevant, see Ledyard, Porter, and Wessen (2000). Of course, we can also
consider classical applications such as the procurement of bus lines, bridges,
or streets as well as the allocation of R&D money.

4

1.1 Literature

The knapsack problem is a classical problem in combinatorial optimization
with a wide range of economic applications. Even though it has been studied
since at least the late 19th century, publications in economics have remained
relatively silent on this issue. Most prominently, in his Nancy L. Schwartz
memorial lecture Maskin (2002) addressed the related problem of the UK
government that put aside a fixed fund to encourage firms to reduce their
pollution. The government faces n firms that have private marginal cost
of reduction θi and can commit to reduce xi units of pollution. To reduce
pollution as much as possible, the government pays expected compensation
transfers ti to the firms, who report costs and reduction to maximize ti−θixi.
For some distributions, Maskin (2002) proposes a mechanism that satisfies
an ex-post participation constraint, an ex-post incentive compatibility con-
straint, and the condition that the budget is not exceeded in expectation. In
their response to Maskin (2002), Chung and Ely (2002) look at a more general
class of mechanism design problems with budget constraints and translate
them into a setting à la Baron and Myerson (1982). Their approach nests
Maskin (2002) and also Ensthaler and Giebe (2014a) as special cases. How-
ever, the latter more explicitly derive a constructive solution. In contrast
to us, they consider a soft budget constraint that only requires the sum of
expected transfers to be less than the budget. This is a relevant setting as
well, but we think that in many of the examples provided so far a hard bud-
get constraint must be imposed because funds exceeding the budget might
simply not be available.

Ensthaler and Giebe (2014a) circumvent this problem by using AGV-budget-
balancing (such as Börgers and Norman, 2009) to get a mechanism that is
ex-post budget-feasible. However, getting an ex-post balanced budget in such
a way comes at the cost of sacrificing ex-post individual rationality. Many ap-
plications do not allow this constraint to be weakened. For instance, subsidy
applicants usually cannot be forced to conduct their proposal when receiving
only a small or possibly no subsidy. Alternatively, limited liability justifies
insisting on ex-post individual rationality. To the best of our knowledge, no
paper exists that jointly considers optimal mechanism design under ex-post
budget balance and ex-post individual rationality in a procurement setting.
Ensthaler and Giebe (2014b) propose a clock mechanism that coincides with

5

our optimal mechanism in the symmetric case for many parameterizations4

but differs in the asymmetric case by holding the cost-benefit-ratio equal
among projects. By simulating different settings, they conclude that this
mechanism outperforms a mechanism used in practice. This clock mecha-
nism is outperformed by our mechanism.

Our problem is also investigated by computer scientists such as Dobzinski,
Papadimitriou, and Singer (2011). However, instead of specifying the pri-
vate information optimum they search for an algorithmic mechanism that
approximates the full information optimum within specific bounds. In con-
trast to the algorithmic approach that is used by them and to solve the
canonical knapsack problem, we directly characterize the optimal allocation
under private information.

Dizdar, Gershkov, and Moldovanu (2011) investigate a dynamic knapsack
problem where impatient projects with (possibly) private capacity require-
ment w and willingness to pay v arrive over time and a mechanism designer
offers them a (constrained) capacity w′ and a price p. The projects’ utility
is given by wv − p if the assigned capacity suffices w′ > w and by −p other-
wise. However, the static version of their problem does not mirror ours in the
way procurement auctions mirror seller-buyer auctions. In their model, the
mechanism designer is only interested in the sum of payments. In our frame-
work, the designer not only wants to minimize payments but also maximize
aggregate value of all greenlighted projects.

There seems to be no reasonable analogy to a setting where the mechanism
designer is a similarly constrained seller and the agents are buyers. Budget
constrained buyers in auctions have been discussed in the literature, e.g. by
Pai and Vohra (2014) or Che and Gale (1998). However, note that these
authors study constrained agents whereas in our setting the designer is con-
strained.

In the following section, we introduce the model. In section 2.1 we rewrite
the problem as a problem of finding the optimal z-mechanism. Sections 2.2
and 2.3 cover symmetric and asymmetric environments separately. Next, we
discuss extensions and possible modifications to the model in section 3 and

4In contrast to their setting, the mechanism designer in our model values residual
money. Therefore the designer will not greenlight projects with negative virtual value.
Ensthaler and Giebe (2014b) do not consider this case.

6

finally we conclude in section 4.

2 Model

This section is organized as follows. First we introduce the notation and
elaborate technical details that are helpful towards finding properties of the
optimal mechanism. Subsequently, we argue that the optimal mechanism
belongs to a class of mechanism that we call z-mechanisms. A z-mechanism
is characterized by monotone cutoff functions z that only depend on the cost
of projects that are not conducted. We lay out how to obtain the optimal z-
mechanism. In subsection 2.2 we fully characterize the optimal z-mechanism
for the symmetric case and propose a clock-auction implementation. Finally
we illustrate the difference to a non-symmetric environment and characterize
properties of the optimal z-mechanism in the non-symmetric environment.
The optimal clock-auction for the general case not only features asynchronous
clocks but also requires that subsets of clocks periodically hold.

There is a set I = {1, . . . , n} of n projects and one mechanism designer. Each
project can be conducted exactly once. The designer gains utility v for each
project that is conducted. Each project acts as an economic agent. If project
i is executed, it incurs cost ci ∈ [ci, ci]. The costs are the projects’ private
information and are drawn independently and identically from a distribution
Fi(c). We assume Fi(c) to be continuous and continuously differentiable
with a positive continuous density fi(c). The value of the project, v, and the
distribution, Fi(c), are common knowledge.

We employ the revelation principle and without loss of generality limit atten-
tion to direct mechanisms. In addition, we restrict ourselves to deterministic
mechanisms. This restriction implies that once all cost reports are collected
we know with certainty which project will be selected by the mechanism.
Formally, the designer partitions the set of projects into two disjoint sets
G ∪ R = I. We will say that projects in set G are ”greenlighted” while the
other are ”redlighted”. This decision is represented by

qi = 1 ∀i ∈ G and qi = 0 ∀i ∈ R.

To compensate project i for its cost, the designer pays transfer ti. Therefore a
direct mechanism is characterized by 〈qi, ti〉. It is a mapping from the vector

7

of cost reports c ∈ ×ni [ci, ci] both into provision decisions and transfers.
When we talk about the allocation, we refer to the former. Project i’s utility
ui is given by its transfer minus the cost it bears.

ui = ti − qici

The designer derives value vi from each greenlighted project i ∈ G while
having to pay the sum of transfers. Therefore she wants to maximize the
aggregate value of greenlighted projects while minimizing cost. Her (ex-post)
utility function uP implies that, in our setting, the designer values residual
money.

uD =
∑
i

(qivi − ti) (1)

We impose an ex-post participation constraint. Thus, if i is greenlighted the
transfer must be at least as high as the cost.

ti(ci, c−i)− qi(ci, c−i)ci ≥ 0 ∀i, ci, c−i (PC)

In addition, the designer has a budget constraint that is hard in the sense
that she cannot spend more than her budget B for any realization of the cost
vector. That is, the designer can never exceed her budget

∑
i

ti(c) ≤ B ∀c. (BC)

Finally, incentive compatibility has to hold in (weakly) dominant strategies.
Therefore, for every realization of the cost vector, project i’s truthful report
must give it at least as much utility as any possible deviation.

ti(ci, c−i)− qi(ci, c−i)ci ≥ ti(c̃i, c−i)− qi(c̃i, c−i)ci ∀i, ci, c−i, c̃i (IC)

One may think that a natural approach to this problem would be to express
the ex-post transfer ti(ci, c−i) as a function of the ex-post allocation decision
qi(ci, c−i), both taking c−i as given, applying the envelope theorem. Then

8

it is possible to restrict attention to the allocation in order to solve for the
optimal mechanism. However, this approach does not reduce the complexity
of the problem. The reason is that the ex-post transfers and allocation for
one cost vector restrict transfers and allocation for other cost vectors in a
manner much more involved than standard monotonicity. In particular, the
ex-post transfer expressed as a function of the ex-post allocation might be
ill-behaved. Therefore, we cannot arrive at sufficient conditions using convex
optimization. 5

2.1 Rewriting the problem

We search for the direct mechanism that maximizes the expected utility of
the designer. We call this mechanism the optimal mechanism. Our first step
is to show that the ex-post constraints imply that the optimal mechanism
has to be in cutoffs.

Lemma 1. The optimal mechanism can be represented by cutoff functions
zi(c−i), where project i is greenlighted whenever it reports cost weakly below
its cutoff.

qi(ci, c−i) = I(ci ≤ zi(c−i))

The transfer to project i will be its cutoff whenever it is greenlighted and
zero otherwise.

ti(ci, c−i) = qi(ci, c−i)zi(c−i)

Proof. First note that for any two cost reports ci, c
′
i of project i and for

some c−i (IC) implies that if qi(ci, c−i) = qi(c
′
i, c−i), then we must also have

ti(ci, c−i) = ti(c
′
i, c−i). Otherwise i could deviate to the report giving a higher

transfer.

Suppose project i is greenlighted for some cost reports given c−i. Then there
are only two possible values for ti, depending on whether i is greenlighted or
not: tqi=1

i and tqi=0
i .

Define zi(c−i) = tqi=1
i − tqi=0

i . Then (IC) again gives the following.

5Note however that relaxing either budget or participation constraint to hold only
in expectation would enable us to use the techniques employed by Ensthaler and Giebe
(2014a).

9

qi(ci, c−i) =

{
1 if ci ≤ zi(c−i)

0 if ci > zi(c−i)

Suppose to the contrary that for some realization ĉi < zi(c−i) we would have
qi(ĉi, c−i) = 0. Then deviating to a cost report that ensures the green light
would imply a utility increase of zi − ci. An analogous argument applies for
ĉi > zi(c−i) > 0.6

The last step is to show that tqi=0
i = 0. This result trivially follows from the

mechanism being optimal, i.e. maximizing expected utility of the designer.

Lemma 1 shows that the allocation and the transfers are characterized by
cutoffs, with which project i is greenlighted whenever it reports cost that lies
weakly below the cutoff. These cutoffs are functions of the other cost reports
c−i. Therefore what remains to be determined is the nature of the optimal
cutoffs. The maximization problem of the designer is given by the following.

maxzi(c−i) E [
∑

i qi(c)vi − ti(c)]
s.t. (BC),

qi(c) = I(ci ≤ zi(c−i))

ti = I(ci ≤ zi(c−i))zi(c−i)

(2)

Here qi and ti are determined by cutoff zi. Therefore incentive compati-
bility and participation constraints come for free. The next step towards
solving this problem involves applying standard methods introduced by My-
erson (1981). Now we define the conditional expected probability of getting
greenlighted and the conditional expected transfer.

Qi(ci) = E[qi(ci, c−i)|ci]
Ti(ci) = E[ti(ci, c−i)|ci]

The interim incentive compatibility required by Myerson (1981) is weaker
than our condition (IC). Consequently, the expected transfer is determined

6When ci = zi, (IC) permits both qi = 0 and qi = 1. For ease of exposition, we stick
to qi = 1.

10

by the allocation, Ti(ci) = Qi(ci)ci +
∫ c
ci
Qi(x)dx. The usual monotonicity

condition is trivially fulfilled as we are dealing with cutoff mechanisms. This
reformulation in turn gives us a way to rewrite the objective function as a
function of the allocation. Substituting into problem (2) and integrating by
parts gives the following.

maxzi(c−i) E
[∑

i I(ci ≤ zi(c−i))
(
vi − ci − Fi(ci)

fi(ci)

)]
s.t.∑

i I(ci ≤ zi(c−i))zi(c−i) ≤ B ∀c
(3)

We will call ϕi(ci) := ci + Fi(ci)
fi(ci)

the virtual cost of project i and ψi(ci) :=

vi − ϕi(ci) the virtual value. Here, ϕ and ψ are the procurement analogues
to standard auction terminology. Now we can directly see from problem (3)
that the optimal mechanism will maximize the expected sum of greenlighted
virtual values.

Note that constrained optimization via Lagrangian is not straightforward
here because of the non-differentiability of the indicator function. Instead,
in the following we derive useful properties of the optimal cutoffs that can
be exploited to characterize the optimal mechanism.

Assumption 1 (Log-concavity). For all i, the cumulative distribution func-
tion of ci, Fi(·), is log-concave and has a continuous density function fi(·).

This assumption is a very common in information economics. This prop-
erty is equivalent to the ratio f/F being a monotone decreasing function or
the ratio F/f being monotonically increasing. Hence, the common regular-
ity assumption is implied: ϕi(ci) is strictly increasing and ψi(ci) is strictly
decreasing.

Lemma 2. Disregarding (BC) the optimal cutoffs are given by z∗∗i and are
independent of the cost reports.

z∗∗i :=

{
ψ−1
i (0) if ψ−1

i (0) ∈ [ci, ci]

c otherwise

In the symmetric case, z∗∗i = z∗∗.

11

Regularity ensures that a lower cost ci translates to higher virtual value
ψi(ci). Therefore the designer wants to greenlight any project with cost
weakly below z∗∗i . Note that regularity implies the invertibility of ψi(ci) and
thus allows for the above definition of z∗∗i . Crucially, Lemma 2 implies that
it is never optimal to allocate the provision right to a project with negative
virtual value.

We have previously introduced G and R as the sets of greenlighted and
redlighted agents. Consequently, we denote the cost vector of projects in G
as cG and similarly the cost vector of projects in R as cR. We now define a
class of mechanisms and then show that any mechanism outside of this class
cannot be optimal.

Definition 1 (z-mechanism). A z-mechanism is characterized by a set of cut-
off functions {zi(·)}i∈I that are almost everywhere equal to cutoff functions
that are

1. left-continuous for each of its arguments,

2. always weakly below z∗∗i ,

3. weakly increasing in the other projects’ costs,

4. independent of costs cG conditional on {G,R} being the partition of
greenlighted and redlighted projects.

The corresponding direct mechanism 〈qi, ti〉 is given by:

qi(ci, c−i) = I(ci ≤ zi(cR))

ti(ci, c−i) = qi(ci, c
R)zi(cR).

Note that z-mechanisms have some salient features. The cutoffs of those
projects that get greenlighted are only determined by the cost report of
projects that get redlighted. This feature is due to the fact that project i’s
cost contains no information about the cost report of project j. What can
be exploited however is the ordering of cost reports at the margin. Here,
clearly, there is no incentive to misreport. Being able to restrict attention
to z-mechanisms is highly useful, as the set of all feasible z-mechanisms is a
much more tangible object than the substantially larger set of all permissible
cutoff-mechanisms. In particular, the nature of z-mechanisms allows the
designer to implement any optimal allocation with an appropriately designed
descending clock auction.

12

For some of the following lemmata and propositions, we provide the proof for
the two-project case while giving the general proof in the appendix. We do
this because the logic of the proof will be the same for both n = 2 and n > 2
but a proof for the former is much easier to read. In addition, it provides
comparability between the symmetric case and the asymmetric case, as we
restrict ourselves to n = 2 in the asymmetric case.

Proposition 1. Among all mechanisms satisfying (PC), (BC) and (IC), any
mechanism that maximizes the designer’s payoff (1) is a z-mechanism.

We divide the proof into several lemmata showing that any optimal mecha-
nism can only violate the properties of definition 1 on a set with Lebesgue-
measure zero. In order to make the functions we talk about unique, we will
w.l.o.g. restrict attention to cutoff functions that satisfy the properties. Note
that property 1 does not require a proof because we can replace any function
zi(·) with a left-continuous function that is identical up to a set of points
with Lebesgue-measure zero. Property 2 follows directly from the rewritten
objective function (3). Let us now continue with property 3.

Lemma 3. The optimal cutoff function zi(c−i−j, cj) is almost everywhere
equal to a left-continuous function that is weakly increasing in cj for all i, j
with j 6= i, i.e. zi(cj, c−i−j) ≥ zi(c

′
j, c−i−j) for almost every (cj, c

′
j) : cj >

c′j and c−i−j.

Proof. (with n = 2, see appendix for the general proof)
It follows form Lemma 2 that any optimal function zi(·) cannot exceed z∗∗i .

Given any function z1(·), suppose to the contrary that there exists a set
H ⊂ (cL, c2] of the other projects’ cost with positive Lebesgue-measure such
that z2(cL) = zL and z2(c1) ≤ zH for all c1 ∈ H with z∗∗2 ≥ zL > zH . That
is, z2(·) is decreasing somewhere.

Now, consider the deviation ẑ2(c1) = zL for all c1 ∈ H. In words, flatten the
decreasing part in z2(·) and leave z1(·) as it is.

Case 1: For all c2 > zL > zH . The deviation affects neither the budget
constraint nor the profit, because project i is not executed for both cutoffs
zL and zH .

Case 2: For all c2 ≤ zH < zL. The deviation again has no impact on
profit, because project 2 is executed for both cutoffs. Moreover, c2 pins

13

down z1(c2) and at cost vector (cL, c2) both projects are executed. Therefore,
B ≥ z2(cL) + z1(c2), i.e. the deviation is budget-feasible.

Case 3: For all c2, z
L ≥ c1 > zH , the deviation is feasible and profitable.

1. z1(c2) ≥ c1 > cL: Then it must be that B ≥ z1(c2) + zL as the initial
(feasible) mechanism executes both projects when costs (cL, c2) realize.

2. c1 > z1(c2) ≥ cL: Similarly, it must be that B ≥ z1(c2) + zL > zL.

3. c1 > cL > z1(c2): Then it must be that B ≥ zL.

Hence, it cannot be optimal that z1(·) is decreasing anywhere.

Lemma 3 establishes that cutoff functions must be weakly increasing in their
arguments. The intuition is straightforward. The cost draws of all projects
are independent. Therefore project i’s cost report only matters for the payoff
generated from project j 6= i through the budget constraint. Project i’s
cost report only influences the budget through exceeding or lying below the
cutoff. If project i exceeds its cutoff, this frees budget to be distributed
among the other projects. Consequently, their cutoffs must remain constant
or increase. There are infinitely many possible cutoff functions that differ on
finitely many points that have Lebesgue-measure zero. In the following we
restrict attention to the left-continuous version of any such function.

Remember that G represents the set of greenlighted projects and R repre-
sents the set of redlighted projects. We establish that given that only the
projects of some set G are greenlighted and given the remaining projects
costs’ cR, for all g ∈ G all functions zg(·) intersect each other at the point
(aG1 (cR), aG2 (cR), ...).

Lemma 4. Conditional on any arbitrary partition {G,R}, the optimal cutoff
functions zg for all g ∈ G are independent of costs of all greenlighted projects
cG. That is,

zg(cG−g, cR) = zg(c
′
G−g, cR),

for all cG−g and c′G−g such that G is the set of greenlighted agents.

Proof. (with n = 2, see appendix for the general proof and consult figure 1
for intuition)
By lemma 1 the optimal mechanism has to be in cutoffs. What remains to
be shown is that said cutoffs only depend on cR. For G = {1} or G = {2},

14

i.e. when only one project is greenlighted, the statement follows from the
nature of a cutoff function. Hence we need to show that the cutoffs must
be constants whenever G = {1, 2}. Therefore suppose C{1,2} has positive
Lebesgue-measure.

Take any feasible candidate mechanism with any increasing cutoff functions
zi(·) and define

a1 = max{c1|∃c2 : c2 ≤ z2(c1), c1 ≤ z1(c2)}
a2 = max{c2|∃c1 : c1 ≤ z1(c2), c2 ≤ z2(c1)}.

The maximum exists by left-continuity of zi(·) following lemma 3. Since we
sometimes greenlight both projects, the sets over which we have defined a1

and a2 must be non-empty. Hence by definition of a1, there exists c̃2 : a1 =
z1(c̃2). Similarly, there exists c̃1 : a2 = z2(c̃1).

By definition (c̃1, c̃2) ≤ (a1, a2). Therefore, a1 + a2 ≤ B is implied by the
budget constraint.

Now we show that z1(c′2) = a1, for all c′2 ≤ a2 and z2(c′1) = a2 for all c′1 ≤ a1.
Suppose not. Suppose (without loss of generality) there is some Ξ ⊂ [0, a2]
with positive Lebesgue-measure such that z1(c′2) < a1 for all c′2 ∈ Ξ. Call
zΞ

1 := maxc2∈Ξ z1(c2). Since a1 +a2 ≤ B, changing the mechanism to z1(c′2) =
a1, ∀c′2 ≤ a2 does not violate the budget-constraint and increases the payoff
by:

∆ > Pr(c2 ∈ Ξ)

∫ a1

zΞ
1

ψ1(c)dF (c) > 0.

By combining our earlier insights with the previous two lemmata, we have
shown that the optimal mechanism must be a z-mechanism.

2.2 The symmetric case

In this section, we focus on symmetric projects where vi = v and Fi = F
for all projects i. An implication of this assumption is that the order of

15

B c1

B

c2

{1, 2}

a2

a1

Figure 1: In Lemma 4, we show that in the non-trivial 2-project case when-
ever G = {1, 2}, both projects get constant transfers summing up to the
budget. For instance, the weakly increasing candidate mechanism depicted
above is improved by the deviation indicated by the arrows.

costs coincides with the order of virtual values and that z∗∗i = z∗∗ for all
i. Now we show how to utilize the established results to characterize the
optimal allocation and also how to implement it. Although we know that
we only have to solve an optimization problem for optimal constants, we will
discuss possible deviations in greater detail to highlight where the intuition
goes wrong when considering asymmetric environments.

Proposition 2. Arrange the projects by cost in ascending order, c1 ≤ c2 ≤
· · · ≤ cn and define zk := min

{
B
k
, z∗∗, ck+1

}
. In the symmetric case, the z-

mechanism with zi(c−i) = zk
∗

is the optimal budget-constrained mechanism.
The optimal number of accepted projects k∗ is given by k∗ := max{k|ck ≤
zk}.

Proof. (with n = 2, see appendix for the general proof)
In proposition 1 we have shown that the optimal mechanism must be a z-
mechanism. Consider any z-mechanism M z different from the mechanism
proposed above as a candidate for optimality, in which both projects get
greenlighted sometimes. For graphic intuition of the deviation consult figure
2.

By Lemma 2 this candidate mechanism must never greenlight a project with
negative virtual value. This is depicted as the kink at (z∗∗, z∗∗).

16

In the area above the dashed budget line, c1 + c2 > B, the designer can,
by (BC) and (PC), only execute one of the two projects. It can be directly
seen from objective function (3) that the designer prefers the project with
the higher virtual value, i.e. the one with lower cost. It does not, however,
follow directly that zi(cj) = cj whenever B − ci < cj < z∗∗. The reason is
that the designer may want to forgo executing the better project for some
cost vectors (green triangle and violet square in figure 2) in order to execute
both projects in an additional area (cyan bar, figure 2). In such a case, the
designer is forced by incentive compatibility to execute the worse project (for
cost vectors in the green triangle or violet square).

c B cj

c
B

ci

B
2

B − z

zB
2

z∗∗
zi(cj)

zi(cj) candidate

zj(ci)

Figure 2: A candidate mechanism and the deviation to the proposed mech-
anism.

By lemma 4 both cutoffs must be constant whenever both projects are exe-
cuted. In optimum in that case, there can be no slack in the budget constraint
and zi is flat in that region.

Now, consider candidate mechanism M z

zi(cj) =

z∗∗ if cj ≥ z∗∗

cj if z < cj < z∗∗

B − z if cj < z

and zj(ci) =

z∗∗ if cj ≥ z∗∗

ci if B − z < cj < z∗∗

z if cj < B − z
(4)

17

and see that a deviation to the mechanism in the proposition is always prof-
itable.

For ease of exposition, let A = B
2

. This proposed deviation to the z-
mechanism MA changes the designer’s payoff in the following way

∆ = Fj(z)

∫ A

B−z
ψi(x)dFi(x) (magenta+violet)

− Fi(A)

∫ z

A

ψj(c)dFj(c) (cyan+violet)

+

∫ z

A

∫ c

A

ψi(x)dFi(x)− (Fi(c)− Fi(A))ψj(c)dFj(c) (green)

where the colors represent the area in figure 2 where the allocation changes.
Everywhere else the allocation and payoff remain the same.

To rewrite ∆ define γ(x) = F (x)(v − x) where γ′(x) = ψ(x)f(x).

∆ = F (z)(γ(A)− γ(B − z))− F (A)(γ(z)− γ(A))

+ F (A)(γ(z)− γ(A)) +

∫ z

A

γ(c)− γ(A)− F (c)ψj(c)dF (c)

= F (z)(γ(A)− γ(B − z))− F (A)(γ(z)− γ(A))

+ F (A)(γ(z)− γ(A))− γ(A)(F (z)− F (A)) +

∫ z

A

F 2(c)dc

because (ψ(c)F (c) − F (c)(v − c))f(c) = F 2(c) and then since
∫ z
A
F (c)2dc >

F (A)2
∫ z
A

1dc,

∆ > F (z)(γ(A)− γ(B − z))− γ(A)(F (z)− F (A)) + F (A)2(z − A)

= F (A)2(v − A+ z − A)− F (z)F (B − z)(v −B + z)

= (v −B + z)(F (A)2 − F (z)F (B − z))

> 0⇔ F (A)2 > F (z)F (B − z)

This is true under assumption 1, log-concavity. If you maximize F (z)F (B−z)
with respect to z, the first order condition is given by

F (z)

f(z)
=
F (B − z)

f(B − z)
(5)

18

which is only true at z = B/2 since F (x)/f(x) is an increasing function. For
the same reason, the left-hand side is greater (less) than the right-hand side
for z > B/2(< B/2) making z = B/2 the maximum.

We have assumed that in the optimal mechanism both projects get green-
lighted for some cost vectors. Therefore it remains to show that the optimal
mechanism beats the best mechanism in which at most one project gets green-
lighted. The best mechanism that selects at most one project would always
select the project with higher virtual value. Clearly the optimal mechanism
of this proposition creates more payoff as it also always greenlights the project
with higher virtual value. Additionally, it sometimes adds a second project
with positive virtual value.

All greenlighted projects get the same transfer, and those projects that are
excluded do not prefer to instead get the green light with the associated
transfer. There are two rationales for greenlighted projects to get the same
transfer. First, as shown in the proof of proposition 2, this way the probabil-
ity of getting as many projects as possible is maximized. Ex-post incentive
compatibility prevents budget to be shifted away from projects with low cost
reports to projects with high costs. Therefore offering equal cutoffs is the
best the designer can do. Second, as shown in (3) - the rewritten maximiza-
tion problem of the designer - the expected utility of the designer is given
by the sum of virtual values of greenlighted projects. Therefore she wants to
greenlight those projects with the highest virtual values. That goal is exactly
consistent with offering equal cutoffs to greenlighted projects and excluding
those with higher cost. In the optimal allocation greenlighted projects will
have higher virtual value than those who are not greenlighted.

The compatibility of the two objectives - get as many projects as possible
and get those with the highest virtual values - is a special feature of the
symmetric case. It generally fails in the asymmetric case, as we demonstrate
in the next section.

Figure 3 illustrates the optimal budget-constrained allocations in an example
with two projects. Panel 3b shows the fully-constrained optimal allocation
juxtaposed with the relaxed optimal allocation when (IC) is neglected, shown
in panel 3a. First, note that in this example v ≥ c and c < B. Therefore a
completely unconstrained designer with full information would always green-
light both projects, and a budget-constrained designer with full information

19

c B c1

c
B

c2

both

1

2

(a) Budget-constrained, full information

c B c1

c
B

c2

both

1

2
z2∗

z2∗

none

z∗∗

z∗∗

(b) Budget-constrained, private information

Figure 3: An example of optimal allocations for the symmetric case with
n = 2

at least one. However, z∗∗ < c. Therefore for some realizations of c (the
upper-right corner of panel 3b), no project will get greenlighted in the op-
timal allocation, even though doing so would be profitable from an ex-post
perspective. The negative virtual value of the projects in these cases indi-
cates that the cost of allocating to such a project - incentive compatibility
will require higher transfers for other cost types - outweighs the benefit from
an ex-ante perspective. The second major difference between the relaxed
optimal allocation and the optimal allocation can be seen for those realiza-
tions of costs where allocating to both projects would be feasible only in the
relaxed problem. This difference comes from the designer’s inability to shift
budget from low-cost to relatively higher-cost projects.

Corollary 1. In the symmetric case, the optimal direct mechanism can be
implemented by a descending-clock auction. The clock price, denoted by τ ,
will start at z∗∗ and descend continuously down to B

n
. Projects can drop out

at any price but cannot re-enter. The auction stops once the clock price can
be paid out to all projects remaining in the auction.

We consider the descending-clock auction of corollary 1 to be a natural indi-
rect mechanism that implements the outcome of the optimal z-mechanism.

20

Project i’s equilibrium strategy, which implements this outcome, has it stay-
ing in the auction as long as the price is weakly larger than its private cost,
τ ≥ ci. It is easily verifiable that this is a weakly dominant strategy for
project i.

The main advantages of clock auctions are twofold. Clock auctions are gen-
erally easy to understand and hard to manipulate. Furthermore they are
less information hungry than, for example, sealed bid auctions. In this case,
the designer only learns the private information of those projects that are
not greenlighted. These features of clock auctions make them attractive for
applications in which there is limited trust between the involved parties.

2.3 The asymmetric case

In the previous section, we examined the very special symmetric case. In
this section, we demonstrate why the logic of the optimal mechanism in the
symmetric case does not carry through to the asymmetric case. To preserve
tractability, we restrict ourselves to the two-project case. However, now we
allow for differing values as well as differing distributions for c1 and c2.

First note that we can draw on some of the observations from the symmetric
case. We did not use symmetry in Lemma 1 and 2. Therefore, just as
in the symmetric case, we are faced with a problem of finding the right
cutoff functions. Similarly, the rewritten objective of the designer given by
maximization problem (3) is also valid for the asymmetric case. The designer
still wants to maximize the expected virtual value of greenlighted projects
and allocating to projects with negative virtual value is not profitable.

maxz1(c2),z2(c1) E
[
I(c1 ≤ z1(c2))

(
v1 + c1 + F1(c1)

f1(c1)

)
+I(c2 ≤ z2(c1))

(
v2 + c2 + F2(c2)

f2(c2)

)]
s.t.

I(c1 ≤ z1(c2))z1(c2) + I(c2 ≤ z2(c1))z2(c1) ≤ B ∀c1, c2

(6)

In the symmetric case, the order of virtual values coincides with the reversed
order of costs. A natural way to extend the optimal allocation to the asym-
metric case is to adjust the cutoffs so that they equalize virtual value. We
will call this the candidate allocation. The corresponding descending-clock

21

auction would have project i’s clock start at the now individual z∗∗i . Then
clocks descend while keeping the virtual value implied by the clock price
equal for all projects. Again, the auction stops when the entire sum of ac-
tive clock prices can be covered. However, the designer can generally gain a
higher expected payoff with another mechanism.

The condition for optimality of the candidate allocation is stated in proposi-
tion 3. By regularity, there can only be one z such that ψ1(z) = ψ2(B − z).
To implement the candidate allocation, the constant cutoffs at which both
projects are greenlighted must be this z for project 1 and B − z for project
2. But then, we only obtain optimality if F2(B−z)

f2(B−z) = F1(z)
f1(z)

. The intuition
behind this statement is straightforward. Selecting z in order to satisfy
ψ1(z) = ψ2(B − z) allows the designer to always get the project with the

higher virtual value, if she cannot get both. However, if F2(B−z)
f2(B−z) 6=

F1(z)
f1(z)

the
cutoffs z and B − z will not maximize the probability to get both projects.

Therefore, the two goals of the designer - getting the projects with the highest
virtual value and getting as many projects as possible - are only aligned if
the condition of proposition 3 is met. Note that the condition is met by
construction in the symmetric case. However, in an asymmetric environment
the condition will be violated in general.

Proposition 3. In the non-trivial asymmetric two-project case, i.e. n = 2,
z∗∗1 + z∗∗2 > B, where values or cost distributions differ across projects, it
is not generally optimal to always allocate to the project with the higher
virtual value. In fact, it is only optimal if there exists a cutoff z such that

ψ1(z) = ψ2(B − z)

F1(z)

f1(z)
=
F2(B − z)

f2(B − z)
,

which is not generally the case.

Proof. Given that we are in the non-trivial case, z∗∗1 + z∗∗2 > B, we know
from lemma 4 that the cutoffs must be constants whenever both projects are
greenlighted. Furthermore, we know that these constants must add up to
the budget. We will call project 1’s cutoff z and project 2’s cutoff B − z.
These cutoffs pin down the allocation if at least one project has cost below
its constant cutoff. Otherwise, we are free to choose the allocation. A glance

22

at the objective function (6) reveals that in such a case it is optimal to
greenlight the project with higher but still positive virtual value, if feasible.

This allows us to rewrite the objective function (6) as a function of z.

π(z) =

∫ z

0

ψ1(c1)dF1(c1) +

∫ B−z

0

ψ2(c2)dF2(c2)

+

∫ c2

max{ψ−1
2 (ψ1(z)),B−z}

∫ min{ψ−1
1 (ψ2(c2)),z∗∗1 ,B}

z

ψ1(d)dF1(d)dF2(c2)

+

∫ c1

max{ψ−1
1 (ψ2(B−z)),z}

∫ min{ψ−1
2 (ψ1(c1)),z∗∗2 ,B}

B−z
ψ2(d)dF2(d)dF1(c1)

To obtain the derivative with respect to z we can use the rules for differenti-
ation under the integral sign.7 Given the max operators, the derivative will
take a different form depending on whether ψ1(z) ≷ ψ2(B − z). However, as
π(z) is continuously differentiable, it suffices to look at one of the two forms.

∂π

∂z

∣∣∣∣
z:ψ1(z)≥ψ2(B−z)

=

∫ ψ−1
1 (ψ2(B−z))

z

ψ1(x)dF1(x)f2(B − z)+

+ ψ1(z)f1(z)F2(B − z)

− ψ2(B − z)f2(B − z)F1(ψ−1
1 (ψ2(B − z)))

Now take the z corresponding to the candidate allocation with ψ1(z) =
ψ2(B − z). In this case we are left with

∂π

∂z
= 0⇔ F2(B − z)

f2(B − z)
=
F1(z)

f1(z)

7Define g(z, c2) :=
∫min{ψ−1

1 (ψ2(c2)),z
∗∗
1 ,B}

z
ψ1(x)dF1(x)f2(c2) and then use

d
dz

(∫ b(z)
a(z)

g(z, c2)dc2

)
= g(z, b(z))b′(z)− g(z, a(z))a′(z) +

∫ b(z)
a(z)

gz(z, c2)dc2.

23

The simplest way to lay out the intuition behind proposition 3 is by an
example. Consider example 1. The candidate allocation demands cutoffs
z̃1

2 = 0.625 and z̃2
2 = 0.375 for allocating to both projects. At these cutoffs,

the probability of allocating to both projects is 0.625 · 0.375 ≈ 0.234. This
allocation is depicted in panel 4a. Now the maximal feasible probability to
allocate to both projects is at equal cutoffs, ẑ1

2 = ẑ2
2 = 0.5. The correspond-

ing area is the dotted square in the lower-left corner of panel 4b. However, at
these cutoffs it is not incentive compatible to always allocate to the project
with higher virtual value if at least one project exceeds ẑi

2 - i.e. to allocate
along the dotted diagonal line.8 Hence, incentive compatibility introduces a
trade-off between maximizing the probability of allocation to both projects
and allocating to the preferred one if only one project is feasible. Conse-
quently, the optimal cutoffs (z∗1 , z

∗
2) for allocating to both projects do not lie

at (0.625, 0.375) - given that the condition of proposition 3 fails - but rather
at (0.53, 0.47).

Example 1. There are two projects, (n = 2), with v1 = 5, v2 = 4.5, and
c1, c2 ∼ U [0, 1]. The budget is given by B = 1. The optimal cutoff functions
are given by:

z1(c2) =

0.53 if c2 ≤ 0.47

c2 + 0.25 if 0.47 < c2 ≤ 0.75

1 if c2 > 0.75

z2(c1) =

{
0.47 if c1 ≤ 0.72

c1 − 0.25 if c1 > 0.72

The corresponding optimal allocation is:

(q1, q2) =

(1, 1) if 0 ≤ c1 ≤ 0.53 and 0 ≤ c2 ≤ 0.47

(1, 0) if 0 ≤ c1 ≤ 0.72 and c2 > 0.47

(1, 0) if c1 > 0.72 and ψ1 ≥ ψ2

(0, 1) if 0.53 < c1 ≤ 0.72 and c2 ≤ 0.47

(0, 1) if c1 > 0.72 and ψ1 < ψ2

8Not to be confused with the dashed diagonal representing the budget constraint.

24

The corresponding transfers are:

t1(c1, c2) =

0.53 if c2 ≤ 0.47 and c1 ≤ 0.53

c2 + 0.25 if 0.47 < c2 ≤ 0.75 and c1 ≤ c2 + 0.25

1 if c2 > 0.75

0 otherwise

t2(c1, c2) =

0.47 if c1 ≤ 0.72 and c2 ≤ 0.47

c1 − 0.25 if c1 > 0.72 and c2 < c1 − 0.25

0 otherwise

Example 2. There are two projects, (n = 2), with v1 = v2 = 5,c1 ∼ U [0, 1],
and

F2(c2) =

1 if c2 > 1

c
1
3
2 if 0 ≤ c2 ≤ 1

0 if 0 ≤ c2 < 0

The budget is given by B = 1. The optimal cutoff functions are given by:

z1(c2) =

0.56 if c2 ≤ 0.44

2c2 if 0.44 < c2 ≤ 0.5

1 if c2 > 0.5

z2(c1) =

{
0.44 if c1 ≤ 0.88
1
2
c1 if c1 > 0.88

Allocation and transfers are omitted but can be easily computed from the
cutoff functions as in example 1.

Given the optimal allocation in example 1, there are some realizations of the
cost vector in which the designer allocates to the project with lower virtual
value. These realizations are represented by the shaded area in panel 5a.
Here, (IC), (PC), and the choice of (z2∗

1 , z
2∗
2) force the designer to allocate to

project 2, even though project 1 has the higher virtual value.

25

B, c c1

B, c

c2

both

1

2

z̃1
2

z̃2
2

(a) Candidate allocation

B, c c1

B, c

c2

both

1

2
z2∗

2

z2∗
1

(b) Optimal allocation

Figure 4: Candidate and optimal allocation for example 1

The cost vectors for which the designer allocates to both projects is rep-
resented by the rectangular area in the lower-left corner of panel 5a. The
upper-right corner of this area lies on the dashed line representing the budget
constraint. A point (z2

1 , z
2
2) on this line has z2

1 + z2
2 = B. Moving this corner

point on the dashed line to the right has two effects: shrinking the shaded
area and shrinking the area of the rectangle. While it is desirable to shrink
the shaded area, in which the designer must allocate to project 2 despite its
lower virtual value, shrinking the size of the rectangle lowers the probability
of allocating to both projects. Given that we have an interior solution in this
example, at (z2∗

1 , z
2∗
2) these two effects balance each other out.

Graphically, the fact that there is no slack in the budget constraint whenever
both projects are greenlighted implies that the area representing points at
which both projects are executed touches the dashed line representing the
(BC)-constraint at least once, as can be seen for example in panel 5b. In
fact, it can touch the (BC)-constraint exactly once, as it is not possible to
allocate to both projects when c1 > z2∗

1 or c2 > z2∗
2 without violating (BC)

sometimes. As it is optimal to greenlight both projects whenever possible,
this result means that the area where both projects are greenlighted is the
rectangle with corners (0, 0) and (z2∗

1 , z
2∗
2). Then, if c1 < z2∗

1 but c2 > z2∗
2 , the

nature of cutoffs prevents that the designer greenlights project 2. Therefore,

26

project 1 must be greenlighted, as represented by the lightly shaded area in
panel 5b. A symmetric argument applies to the darkly shaded area. Thus,
looking at panel 5b, the choice of (z2∗

1 , z
2∗
2) determines the allocation for all

points except those in the upper-right corner. Here, the designer is free to
choose the allocation, as long as the line delineating whether project 1 or
2 gets greenlighted is (weakly) increasing or vertical. Not surprisingly, it is
optimal to greenlight the project with the higher virtual value.

B, c c1

B, c

c2

1

2
z2∗

2

z2∗
1

both

(a) Greenlighting the project with lower vir-
tual value

B, c c1

B, c

c2

both
z2∗

2

z2∗
1

2 by (IC)

1 by (IC)

free to
choose (IC)
allocation

(b) (IC)-constraints on the allocation

Figure 5: Greenlighting the project with lower virtual value and (IC)-
constraints on the allocation (example 1)

In proposition 3 and example 1 we have addressed the existence of the trade-
off between quantity and quality, for generic asymmetric environments. Even
though the designer always prefers the project with the higher virtual value,
if she was to greenlight a single project, she sometimes greenlights the project
with lower virtual value out of two rival projects, as quantity is endogenous
here. Graphically, this is represented by the shaded triangle in panel 5a. An
interesting consequence of this tradeoff is that it mitigates the discrimina-
tion against the stochastically stronger project compared to the case where
quantity is exogenous.

To illustrate this property, consider example 2.9 Here the designer chooses

9We choose to make this point by example. However, it should be clear that this point

27

among two projects with identical value but different cost distributions.
Project 2 is stochastically stronger than project 1 in the sense that F1 first-
order stochastically dominates F2 and therefore project 2 tends to have lower
cost. In figure 6 the 45◦-line represents the efficient allocation if only a single
unit is procured. The dashed line below represents the allocation chosen by
a designer maximizing her own payoff in the single unit case. Consequently,
the horizontally dashed wedge in between represents the cost vectors where
the discrimination of project 2 creates an inefficiency. When quantity is en-
dogenous however the inefficiency is mitigated. The size of this effect depends
on the distributions and in figure 6 corresponds to the shaded triangle. In
contrast to the case where quantity is exogenously given, here the designer
allocates efficiently.

B, c c1

B, c

c2

Figure 6: The endogenous quantity mitigates the distortion against the
stochastically stronger project (example 2)

We can implement the optimal mechanism for example 1 with individual
and asynchronous descending price clocks. The price clocks not only run at
individual speeds, occasionally one clock also has to halt. The auction ends
either when one of the projects drops out or when the clocks reach τ1 = z2∗

1

and τ2 = z2∗
2 - whichever happens first. These price clocks are depicted in

figure 7 as a function of time. Note that the entire (maximal) duration of the

can easily be generalized.

28

auction can be divided into three segments. The auction starts with both
clocks at z∗∗1 = z∗∗2 = c. First, τ2 decreases while τ1 is held constant, which
happens until both clocks imply the same virtual value, i.e. ψ2(τ2) = ψ1(c2).
Second, both τ1 and τ2 decrease synchronously, keeping virtual value equal,
ψ1(τ1) = ψ2(τ2), until τ2 = z2∗

2 . Third, now only τ1 decreases until τ1 = z2∗
1 .

If at this point both projects still remain in the auction, the auction stops
and both are greenlighted.

time

τ1, τ2

c

τ2

τ1

z2∗
1

z2∗
2

ψ−1
2 (ψ1(c))

end

Figure 7: Optimal descending-clock auction in example 1

The cost vectors for which the designer greenlights project 2 despite its lower
virtual value, represented by the shaded area in panel 5a, are also represented
graphically in figure 7. If the auction ends in the third time segment (shaded
area of figure 7) before both projects can be greenlighted, project 1 must
have dropped out because τ1 dropped below c1. Project 2 is greenlighted
and receives transfer z2∗

2 even though project 1 has the higher virtual value.
Therefore, if cost vectors in the shaded area of panel 5a realize, the optimal
descending clock auction will end in the third time segment.

We should note again a novel feature of this descending-clock auction. The
clocks of both projects are paused asynchronously for some time of the auc-
tion. One project’s clock runs down while the other project’s clock is paused.
Since we have examined a very simple example, each project’s clock is paused
only once. In a more general setting, the projects’ clocks could possibly pause
and resume several times.

29

Given the nature of our problem, we do not find a simple and general charac-
terization of the optimal mechanism in the asymmetric case. In our example
1 with two projects, the problem boils down to finding one point, (z2∗

1 , z
2∗
2),

with respect to one crucial tradeoff. Naturally, the number of relevant trade-
offs increases with the number of projects. Therefore, unfortunately, charac-
terizing the optimal allocation with a larger set of projects quickly becomes
analytically intractable.

3 Discussion

Considering our model as a starting point, several extensions come to mind.
In this section, we will address the most natural alternative models or exten-
sions.

Disregarding residual money - It depends on the setting whether it is
reasonable to assume that the designer values residual money. To illustrate,
this is not the case in Ensthaler and Giebe (2014a) where money does not
enter the objective function, but only the constraints. Such an assumption
especially suits applications where quality-ranking the projects is possible,
but it is hard to determine a monetary value of said quality. Then, an ordinal
ranking would suffice. Note that in such a setting, the designer would want
to allocate to projects with negative virtual value and would be indifferent
between paying zk∗ or ck∗+1 in the optimal symmetric mechanism. Other
than that, qualitatively our results carry over.

vi as private information, maybe correlated with ci - We can neglect
asking for vi directly since no meaningful non-babbling equilibria in the vi-
dimension exist. If the conditional density of vi|ci has full support, project
i can not credibly announce to be a “high” type, say vi. If we slightly
change the regularity assumption such that E[vi|ci]−ci− F (ci)

f(ci
must be strictly

increasing, our results generalize by exchanging common knowledge vi with
E[vi|ci]. Note that this regularity condition mildly restricts the degree of
positive correlation.

Interdependent types - We can interpret the symmetric case as identical
projects that can be provided at individual costs. Hence, one may wonder
about a setting where projects only draw an imperfect signal about the cost

30

which finally depends on other projects’ signals as well. In such an environ-
ment, it is clear that our price clock implementation can only be optimal
when it is not publicly revealed when high signal projects drop out. In such
an environment, the designer can adjust the cutoffs with information from
the reports of projects that dropped out. This analysis is left for a follow-up
paper.

Other interesting extensions are left for future research, for example: Mul-
tiple projects per agent. For practitioners, a simple approximately optimal
mechanism such as Ensthaler and Giebe (2014b) may be of great value.

4 Conclusion

Despite their importance, knapsack problems with private information have
been somewhat overlooked by the literature on economics. We examine a
setting where a budget-constrained procurer faces privately informed sell-
ers under ex-post constraints. Amongst many possible economic problems,
this applies to subsidy allocation as well as scientific research funding, where
funding institutions are typically endowed with a fixed budget and want to
finance both many projects and projects of high quality. Such problems often
entail relationships in which sellers can renege on the terms of the agreement
ex-post. In order to avoid non-delivery or costly renegotiation it is then
appropriate to impose ex-post constraints on the seller’s side. For such set-
tings, we have have shown that z-mechanisms constitute the class of optimal
deterministic dominant strategy implementable mechanisms. Moreover, we
propose an implementation with a descending clock auction that is easy to
understand and could be used in practice.

A z-mechanism is described by a set of cutoff functions that are increasing
in other projects’ costs. Cutoffs only depend on the cost of other projects as
they drop out of the allocation. In other words, if two different realizations
of the cost vector lead to the same allocation, then the cutoffs of projects
conducted only vary in the costs of projects not conducted. This feature
allows for a simple implementation via descending clocks.

We fully describe the optimal allocation and the corresponding descending
clock auction in an environment where projects are ex-ante symmetric. The

31

optimal mechanism is monotonic in the sense that the k cheapest projects
are greenlighted and all projects conducted receive the same transfer. This
transfer corresponds to either the lowest cost among non-executed projects
or the budget is distributed equally. The equivalent clock auction features a
single price clock that continuously decreases until all active projects can be
financed.

For asymmetric environments, where values and/or cost distributions differ,
we derive a novel tradeoff between quantity and quality of the greenlighted
projects. The designer values both quantity and quality, expressed by the
virtual value, of the projects. In settings where quantity is exogenous, the
designer would always choose the projects with the highest virtual values.
Here quantity is endogenously determined by the mechanism and therefore
it is not always desirable to conduct the best projects. In doing so incen-
tive compatibility would force the designer to reduce the expected number
of greenlighted projects. This insight entails a consequence for the corre-
sponding descending clock auction. Clocks not only run asynchronously but
also periodically have to stop for certain projects. In comparison to settings
where quantity is exogenous, here the allocation is less distorted away from
efficiency, i.e. stochastically weaker projects are favored less.

Finally, we think the class of problems discussed is relevant. We hope that
our methodological approach will contribute to a better understanding of
such problems and open the door for future research in this area.

32

Appendix

Lemma 3. The optimal cutoff function zi(c−i−j, cj) is almost everywhere
equal to a left-continuous function that is weakly increasing in cj for all i, j
with j 6= i, i.e. zi(cj, c−i−j) ≥ zi(c

′
j, c−i−j) for almost every (cj, c

′
j) : cj >

c′j and c−i−j.

cM c1

z2

z3

c1

ĉ3

ĉ2

(a) Intuition for the hat deviation.

cM c1

z2

z3

c1

c̃3

c̃2

(b) Intuition for the tilde deviation.

Figure 8: Continuous decrease / increase

Proof. Suppose to the contrary, that somewhere z2(·) is decreasing in c1.
Then there exists a c1

M and η > 0 such that z2(c1, c−1−2) > z2(c1, c−1−2)

for all c1 ∈ (c1
M − η, c1

M), for all c1 ∈ (c1
M , c1

M + η), and for all c−1−2 ∈
χ−1−2 ⊂ ×j∈I\{1,2}[cj, cj], where χ−1−2 has positive Lebesgue-measure.

With more than two projects the simple deviation of the two project case -
flattening the decreasing cutoff - must not necessarily be feasible. It could be
the case that other projects’ cutoffs are strictly increasing and that for some
cost vectors these cutoffs have to be paid along z2. Then simply flattening
z2 could violate the budget constraint.

33

cM c1

z2

z3

c1

ĉ3

ĉ2

(a) Intuition for the hat deviation.

cM c1

z2

z3

c1

c̃2

c̃3

(b) Intuition for the tilde deviation.

Figure 9: Jump decrease / increase

Suppose there are no such cutoffs. Then a decreasing z2 cannot be optimal
and flattening z2 will increase the designer’s payoff much in the same way
as in the two-project-case. Otherwise, pick a subset of χ̂1 ⊂ (c1

M , c1
M + η)

(with pos. Lebesgue-measure) such that w.l.o.g. project 3’s cutoff increases
in c1 in the analogous sense to the decrease of z2 defined above - for cost
vectors where both project 2 and project 3 are eventually greenlighted, i.e.
z2 and z3 need to be paid both.

The set

Ξ̂23(c1, c−1−2−3, δ) = {(c2, c3)|c2 ∈ (z2(c1, c3, c−1−2−3), z2(c1, c3, c−1−2−3) + δ];

c3 ∈ (z3(c1, c2, c−1−2−3)− δ, z3(c1, c2, c−1−2−3)]}

must have positive measure on R2 for all c1 ∈ χ̂1 and for any c−1−2−3 ∈
χ−1−2−3, where χ−1−2−3 is a set with positive Lebesgue measure where the
cutoff of project 2 is decreasing while the cutoff of project 3 is increasing.
It is the set of (c2, c3) tuples, where c2 just exceeds z2 by no more than δ,
while c3 lies just below z3 by no more than δ - given c−1−2−3 and c1. By

34

Ξ̂2
23(c1, c−1−2−3, δ) we denote the set of project 2 components of tuples in the

set Ξ̂23(c1, c−1−2−3, δ), and similarly for project 3.

Now deviate from the candidate mechanism in setting

ẑ2(c1, c3, c−1−2−3) := z2(c1, c3, c−1−2−3) + δ

ẑ3(c1, c2, c−1−2−3) := z3(c1, c2, c−1−2−3)− δ
for all

c1 ∈ (ĉ1, ĉ1 + ε)

c2 ∈ Ξ̂2
23(c1, c−1−2−3)

c3 ∈ Ξ̂3
23(c1, c−1−2−3)

c−1−2−3 ∈ χ̂−1−2−3 ⊂ χ−1−2−3.

We call this deviation the hat deviation. The intuition for this deviation is
the following. For an ε-environment of c1 to the right of cM1 (i.e. ĉ1 > cM1),
increase the decreasing cutoff z2(c1, c3, c−1−2−3) by δ for all c3 that drop out
of the allocation if z3(c1, c2, c−1−2−3) (at c2) is decreased by δ. Likewise only
increase z3(c1, c2, c−1−2−3) by δ for those c2 that are additionally greenlighted
if z2(c1, c3, c−1−2−3) is increased by δ. Therefore, if the deviation changes the
allocation, project 2 is now greenlighted whereas project 3 is not.

This deviation is feasible. Remember that there must be enough budget to
pay both z2 and z3 - otherwise flattening z2 would have been possible. But
then there is enough budget for z2 + δ and z3 − δ.

Now define

ĉ2 := sup
c1,c−1−2−3

Ξ̂2
23(c1, c−1−2−3)

ĉ3 := inf
c1,c−1−2−3

Ξ̂3
23(c1, c−1−2−3)

s.t.

c1 ∈ (ĉ1, ĉ1 + ε)

c−1−2−3 ∈ χ̂−1−2−3.

35

In words, to get bounds on the payoff change we let ĉ2 be the highest cost
type gained by the deviation and we let ĉ3 be the lowest cost type lost by
the deviation. Then the change in payoff for the hat deviation is bounded in
the following way:

∆̂ > (ψ2(ĉ2)− ψ3(ĉ3))∗∫
χ̂−1−2−3

∫ ĉ1+ε

ĉ1

∫
Ξ̂2

23(c1,c−1−2−3)

∫
Ξ̂3

23(c1,c−1−2−3)

1dF3(·)dF2(·)dF1(·)dF−1−2−3(·).

If ∆̂ > 0, we are set. If not, then consider the following tilde deviation.

Analogously to Ξ̂23 we define the set

Ξ̃23(c1, c−1−2−3, δ) = {(c2, c3)|c2 ∈ (z2(c1, c3, c−1−2−3)− δ, z2(c1, c3, c−1−2−3)];

c3 ∈ (z3(c1, c2, c−1−2−3), z3(c1, c2, c−1−2−3) + δ]}

which again must have positive measure.

Now we deviate for an ε-environment to the left of cM1 (i.e. c̃1 < cM1). But
instead of increasing z2 and decreasing z3, we increase z3 and decrease z2.

z̃2(c1, c3, c−1−2−3) := z2(c1, c3, c−1−2−3)− δ
ẑ3(c1, c2, c−1−2−3) := z3(c1, c2, c−1−2−3) + δ

for all

c1 ∈ (c̃1 − ε, c̃1)

c2 ∈ Ξ̃2
23(c1, c−1−2−3)

c3 ∈ Ξ̃3
23(c1, c−1−2−3)

c−1−2−3 ∈ χ̃−1−2−3 ⊂ χ−1−2−3.

The relevant bounds to bound the payoff are then given by

36

c̃2 := inf
c1,c−1−2−3

Ξ̃2
23(c1, c−1−2−3)

c̃3 := sup
c1,c−1−2−3

Ξ̃3
23(c1, c−1−2−3)

s.t.

c1 ∈ (c̃1 − ε, c̃1)

c−1−2−3 ∈ χ̃−1−2−3.

And this gives the following bound for the payoff

∆̃ > (ψ2(c̃3)− ψ3(c̃2))∗∫
χ−1−2−3

∫ c̃1

c̃1−ε

∫
Ξ̃2

23(c1,c−1−2−3)

∫
Ξ̃3

23(c1,c−1−2−3)

1dF3(·)dF2(·)dF1(·)dF−1−2−3(·).

By appropriately choosing δ, Ξ̂−1−2−3, and Ξ̃−1−2−3, we can ensure that ĉ3 >
c̃3 and ĉ2 < c̃2. This follows simply from the notion of increasing/decreasing

cutoffs and is illustrated in figures 8 and 9. Therefore ∆̂ ≤ 0 implies ∆̃ >
0. Consequently, there is always a profitable deviation and our candidate
mechanism could not have been optimal.

Lemma 4. Conditional on any arbitrary partition {G,R}, the optimal cutoff
functions zg for all g ∈ G are independent of costs of all greenlighted projects
cG. That is,

zg(c−g) = zg(cR).

Proof. Take any feasible candidate mechanism with any increasing cutoff
functions zi(·) for any individual project. Assume that for some cost vectors
with positive Lebesgue-measure, only all projects in set G ⊆ I are executed
while all projects of set R are not conducted. Therefore, there exists a set,
CG
R , of cost vectors of projects of set R with positive Lebesgue-measure where

aGi (cR) according to the following definition

aGi (cR) = max{ci|∃cG−i : ci ≤ zi(cG−i, cR),

and cg ≤ zg(cG−j, c−G)∀g ∈ G,
and cr > zr(cG, c−G−r)∀r ∈ R} (7)

37

exists for all i ∈ G given some cost vector cR ∈ CG
R . In words, aGi (cR) is the

highest cost of project i such that, given some cost vector cR of projects that
are not executed, there exists some vector cG−i of costs of competing projects
that induces a cutoff zi(cG−i, c−G) above said cost while each element cg of
the vector cG−i is lower than the cutoff induced by aGi (cR) and the elements
of the cost vectors cR and cG−i−g,

∀cg ∈ cG−i, cg ≤ zg(cR, cG−i−g, a
G
i (cR)).

Simultaneously, it must hold that these costs induce a cutoff such that no
project r ∈ R is conducted

∀cr ∈ cR, cr > zr(cR−r, cG−i, a
G
i (cR)).

Moreover, we can replace any function zi(·) with a left-continuous function
that is identical up to a set of points with Lebesgue-measure zero. Hence,
the limit is reached from below and there exists at least one cost vector
(ĉ−i, a

G
i (cR)) where G is the set of executed projects and aGi (ĉR) = zi(ĉ−i)

holds. Now, notice that

ĉg ≤ aGg (ĉR) ∀ĉg ∈ ĉG−i,

because, given ĉR, there cannot exist a cost vector where only all projects
in G are executed and the cost of project g exceeds aGg (ĉR) by its construc-
tion. Moreover, we have established that every cutoff function zi(·) is weakly
increasing in each argument. Thus,

aGi (ĉR) = zi(ĉ−i) ≤ zi(a
G
G−i(ĉR), ĉR),

where aGG−i is the vector of all aGg defined according to (7) except aGi . This
inequality tells us that, whenever some vector (cR, cG−i) ≥ (ĉR, a

G
G−i(ĉR))10

realizes, a sufficient condition for project i ∈ G to be executed is ci ≤ aGi (ĉR).

The same logic also applies to all projects in G other than i. Therefore, only
all projects g ∈ G are conducted whenever a cost vector realizes such that
aGi (cR) is defined for all i ∈ G11 and where for each element g ∈ G, cg ≤

10When x and y are vectors, x ≥ y means that every element xi of x weakly exceeds
the corresponding element yi of y.

11aGi (cR) is only defined if CG 6= ∅ and cR ∈ CGR , but this does not hinder the proof.

38

aGg (cR) and for all r ∈ R, cr > zr(cG, cR−r). Consequently, the budget con-
straint requires that ∑

g∈G

zg(a
G
−g(cR)) ≤ B. (8)

Furthermore, given cR, for all projects g ∈ G zg(a
G
−g(cR), cR) = aGg (cR) if

cG−g ≤ aGG−g(c−G). That is, the cutoffs are constant given the cost vector of
non-executed projects.

Suppose to the contrary that zi(c−i) < ai(cR) for some i ∈ G and for all
c−i ∈ Ξ ⊂ CG

−i with Ξ having positive Lebesgue measure.

Define Ξ(cG−i−j, cR) ⊂ [0, cj] where zi(cG−i−j, cj, cR) < aGi (cR) for all cj ∈
Ξ(cG−i−j, cR). For any cG−i−j ≤ aG−i−j(cR), let

zΞ
i (cG−i−j, cR) := max

cj∈Ξ(cG−i−j ,cR)
zi(cG−i−j, cj, cR)

By (8), changing the mechanism to

zi(cG−i,−j, cj, cR) = aGi (cR), ∀cj ≤ aGj (cR)

does not violate the budget-constraint. This deviation increases the payoff
conditional on cR by

∆ >

∫
Ξ−j

Pr(cj ∈ Ξ(cG−i−j, cR))

∫ aGi (cR)

zΞ
i (cG−i−j ,cR)

ψi(c)dFi(c)dF−i−j(c−i−j) > 0.

Given that Ξ has positive Lebesgue-measure, this deviation will also strictly
increase the unconditional payoff.

Proposition 2. Arrange the projects by cost in ascending order, c1 ≤ c2 ≤
· · · ≤ cn and define zk := min

{
B
k
, z∗∗, ck+1

}
. In the symmetric case, the z-

mechanism with zi(c−i) = zk
∗

is the optimal budget-constrained mechanism.
The optimal number of accepted projects k∗ is given by k∗ := max{k|ck ≤
zk}.

Proof. The case n = 2 has been proven in section 2.2.

Now, consider n = 3. Fix any c3 and any mechanism as candidate for
optimality. Either c3 > z3(c1, c2) or c3 ≤ z3(c1, c2). In the first case, project

39

3 is not executed and the budget remaining for the other two is still B. In
the second case, project 3 is executed and the budget remaining for the other
two becomes B − z3(c1, c2).

Now, consider deviating to the proposed mechanism only for project 1 and 2.
The change in profit looks like a probability weighted sum of terms similar
to the two project case, only that the distributions F are conditional on c1

and c2 being in some interval (that induces z3 > or < c3) and the budget
must be adjusted.

Because log-concavity of F implies log-concavity of F (c)−F (a)
F (b)−F (a)

this deviation is
always positive like in the case n = 2. The same logic can be applied to any n,
changing any mechanism by selecting two projects and then adjusting their
cutoffs in the following way: The budget is shared equally if both projects
are executed; if only one project is executed, it has to be the one with higher
virtual value; never execute projects with negative virtual value. Iterating
over these steps ultimately arrives at the proposed mechanism which has to
be optimal.

References

Baron, D. P., and R. Myerson (1982): “Regulating a monopolist with
unknown costs,” Econometrica, pp. 911–930.

Börgers, T., and P. Norman (2009): “A note on budget balance under
interim participation constraints: the case of independent types,” Eco-
nomic Theory, 39(3), 477–489.

Che, Y.-K., and I. Gale (1998): “Standard auctions with financially con-
strained bidders,” The Review of Economic Studies, 65(1), 1–21.

Chung, K.-S., and J. C. Ely (2002): “Mechanism Design with Budget
Constraint,” Mimeo, Northwestern University.

Dizdar, D., A. Gershkov, and B. Moldovanu (2011): “Revenue maxi-
mization in the dynamic knapsack problem,” Theoretical Economics, 6(2),
157–184.

Dobzinski, S., C. H. Papadimitriou, and Y. Singer (2011): “Mecha-

40

nisms for complement-free procurement,” in Proceedings of the 12th ACM
conference on Electronic commerce, pp. 273–282. ACM.

Ensthaler, L., and T. Giebe (2014a): “Bayesian optimal knapsack pro-
curement,” European Journal of Operational Research, 234(3), 774–779.

(2014b): “A dynamic auction for multi-object procurement under
a hard budget constraint,” Research Policy, 43(1), 179–189.

Ledyard, J., D. Porter, and R. Wessen (2000): “A market-based
mechanism for allocating space shuttle secondary payload priority,” Ex-
perimental Economics, 2(3), 173–195.

Luton, R., and R. P. McAfee (1986): “Sequential procurement auc-
tions,” Journal of Public Economics, 31(2), 181–195.

Maskin, E. (2002): “How to Reduce Greenhouse Gas Emissions: An Appli-
cation of Auction Theory,” Nancy L. Schwartz Memorial Lecture, North-
western University.

Myerson, R. (1981): “Optimal Auction Design,” Mathematics of opera-
tions research, pp. 58–73.

Pai, M. M., and R. Vohra (2014): “Optimal auctions with financially
constrained buyers,” Journal of Economic Theory, 150, 383–425.

41

	Cover_page_WP_Word_15-02
	expostoptimalknapsack-v1

