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Abstract

I investigate firms’ competition over price and product design under uncertain design

evaluations in the context of Design-Build (DB) auctions. Reviewers’ design evaluations

contain uncertainty from a bidder’s perspective, leading luck to curtail differences in firms’

chances of winning. I model bidders’ behavior and derive semiparametric identification of

the model primitives. Uncertain evaluations worsen the expected price of design quality,

and exacerbate an auctioneer’s uncertainty in auction outcomes. A simple adjustment in

the auction mechanism may completely shut down the impact of uncertain evaluations on

bidding incentives, restoring efficient allocations of projects.
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1 Introduction

Design competitions under uncertain evaluations are common in various settings. For example,

academic researchers face uncertain evaluations of their grant proposals. Fashion designers face

uncertain evaluations of their designs in a fashion contest. Public procurements that involve

billions of dollars often solicit designs from consulting firms, and these competing firms also

face uncertain evaluations of their designs by public officials.1

I study the effect of a client’s uncertain evaluation on suppliers’ design choices under strate-

gic interactions. Transactions involving customized products require a design of the end-product

by the supplier before the product is manufactured. However, suppliers typically do not know

precisely what end-product their client would like.2 Uncertain evaluations introduce an ele-

ment of luck into design competitions, providing heterogeneous suppliers with heterogeneous

incentives: good designers face a lower chance of winning from uncertain evaluations while bad

designers face a higher chance of winning.3 While it is clear that a project could be allocated

to an inefficient contractor due to subjective design evaluations, it is not clear how competing

suppliers respond to a change in the degree of uncertainty in a client’s evaluation of their design

proposals.

To study suppliers’ behavior, I use hand-collected data on Design-Build (DB) auctions from

the Florida Department of Transportation (FDOT). DB auctions are used not only by state

departments of transportation in the U.S., but also in many other countries.4 U.S. Department

of Defense extensitvely uses DB to procure military construction projects and military weapons,

which together cost the tax payers more than a hundred billion dollars annually.5

In a DB auction, bidders compete over price and design to win a contract to deliver an

infrastructure project, ranging from bridge repair to building construction. Upon receiving

price and design proposals, each reviewer of the FDOT independently evaluates and assigns a

score to every design proposal. The quality score of a design proposal is then determined by

1Public Private Partnerships, which have surged in popularity among practitioners, are also an example of
public procurement that involves a design competition among consulting firms.

2While suppliers may communicate with a client to reduce uncertainty, the client may be unwilling to do so
since repeated interactions can be costly. Speed of delivery is often an important consideration in procurement.

3Note that a supplier faces uncertainty in the evaluation of its rivals’ designs as well.
4As of October 2010, there are 39 state departments of transportation that use DB, including California,

Delaware, Georgia, Minnesota, etc. DB auctions are also common in other developed countries, including
Canada, Japan, and Sweden.

5The National Defense Authorization Act for Fiscal Year 2015 (NDAA) bill, which became public law in
December 2014, explicitly prohibits the use of price-only auctions to procure construction services on military
construction contracts. The Associated General Contractors of America, which consists of 26,000 construction
firms, expresses its support to ban the use of price-only auctions for construction services for the reason that
many quality aspects are ignored in price-only auctions.
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the average across reviewers’ evaluations. The bidder with the lowest price per quality score

ratio (PQR) wins the project, and receives its price bid upon completing the project.6

The data reveal a substantial amount of discrepancy among reviewers for a given design

proposal, and conversations with contractors confirm that uncertain design evaluations are a

substantial concern among contractors. Such uncertainty in design evaluations, which I refer

to as evaluation uncertainty, has not been considered to date in the vast auction literature.

Indeed, to the best of my knowledge, there is virtually no empirical work that has investigated

the implications of uncertain design evaluations on supplier behavior.

To guide the analysis, I develop a model in which each bidder strategically chooses its price

and design quality in the face of uncertain design evaluations. The model allows for complex

bidding strategies through multi-dimensional types: bidders are heterogeneous in the variable

cost of providing a quality design, and in the fixed cost of implementing the designed project.

A large amount of uncertainty in design evaluation implies that project allocation is heavily

influenced by luck. Inefficient bidders benefit from noisy evaluations since the bidders would

otherwise lose in the absence of such a noise. Contrary to inefficient bidders, efficient bidders

are less likely to win due to an increased contribution of luck. These asymmetric effects on

bidding incentives result in (i) a higher expected price per unit of design quality, and (ii) a

greater spread in price and design quality. That is, greater evaluation uncertainty worsens the

expected price of design quality, and exacerbates the uncertainty in auction outcomes from the

auctioneer’s point of view.

Identification of the model is challenging. The econometrician does not observe bidders’

design quality choices, but instead observes some noisy evaluations, precluding the standard

inversion approach pioneered by Guerre, Perrigne, and Vuong (2000). Moreover, procurement

auctions of infrastructure projects are known to contain a significant amount of unobserved

auction heterogeneity: the cost commonly shared and observed by bidders but unobserved

by the econometrician. Ignoring unobserved auction heterogeneity exaggerates the extent of

bidder heterogeneities, which in turn undermines the effect of uncertain evaluations on bidding

incentives. The degree of evaluation uncertainty could also be confounded with unobserved

reviewer heterogeneity: differences in evaluations across reviewers that are inherent to reviewer

specific characteristics. Ignoring unobserved reviewer heterogeneity exaggerates the extent of

evaluation uncertainty since unobserved reviewer heterogeneity equally affects scores of different

designs, leaving the design rankings unaffected.7 Thus, I measure evaluation uncertainty by

6PQR is a winner selection rule used by many state departments of transportation, including Alaska, Michi-
gan, North Carolina, and South Dakota.

7Unobserved reviewer heterogeneity may arise from reviewers having different quality standards. For ex-
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the variation in idiosyncratic reviewers’ evaluations net of unobserved reviewer heterogeneity.

I define realization of such an idiosyncratic reviewer’s evaluation as an evaluation noise.

I show semiparametric identification of the model in two steps. Using data on prices, review-

ers’ evaluations, and observables, I decompose bidding strategies into components explained by

auction heterogeneity, bidder heterogeneities, reviewer heterogeneity, and evaluation noise. All

the primitives, except for the distribution of bidder heterogeneities, are directly identified from

this first step. Then, I combine the distribution of bids explained by bidder heterogeneities with

bidders’ first order optimality conditions to recover the distributions of bidder heterogeneities.

A large amount of evaluation uncertainty does not only affect bidding incentives, but also

leads directly to an inefficient allocation of a project. While the auctioneer may wish to avoid

such a misallocation of a project, reducing evaluation uncertainty through hiring a larger num-

ber of reviewers could be very costly. To circumvent this dilemma, I propose a simple auction

mechanism in which each bidder submits a price per unit of design score, precluding evaluation

noises from swapping the rankings of bids. The proposed auction mechanism restores the auc-

tion outcomes of a DB auction with no evaluation uncertainty. A counterfactual experiment,

which examines a switch in the auction mechanism from the DB to the proposed mechanism,

suggests substantial improvements in the auction outcomes.

The result of the analysis has an important economic implication for customized product

markets. Subjective judgments of proposed designs may adversely affect clients due to both a

misallocation of a project and the endogenous response of suppliers. The problem is particularly

relevant when the client wishes to obtain a design “commonly” perceived as high quality, and

not a design she herself likes. The client may wish to avoid such adverse effects by adopting a

selection rule with some objective measures, such as price.

I build on and contribute to the growing literature on multi-attribute auctions and structural

estimation of auction models. DB auctions are a particular type of a multi-attribute auction in

which the winner selection rule is known to bidders.8 Krasnokutskaya, Song, and Tang (2012)

empirically investigate an auction environment in which the attributes-based winner selection

rule is unknown to bidders.9 In this paper, I argue that suppliers face uncertainty in evaluations

ample, reviewers’ leniency in assigning a score may be captured by unobserved reviewer heterogeneity since a
lenient reviewer tends to give a high score to every design proposal.

8The literature on multi-attribute auctions includes Athey and Levin (2001), Athey and Nekipelov (2012),
Bajari et al. (2006), Bajari and Lewis (2011), Che (1993), Hanazono et al. (2012), and Nakabayashi and Hirose
(2013), among others. There has been an extensive literature on structural estimation of first-price auction
models, including Guerre, Perrigne, and Vuong (2000), Hendricks and Porter (1988), Laffont and Vuong (1993),
Paarsch (1992), and Porter (1995).

9Krasnokutskaya, Song, and Tang (2012) make a distinction between multi-attribute auctions and scoring
auctions based on whether or not the auctioneer’s taste is observed. In this paper, I do not make this distinction,
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of their innovative designs even if the selection rule is announced ex-ante.

The rest of the paper is organized as follows. Section 2 describes institutional details and

the data. Sections 3 and 4 develop a structural model and derive identification of the model,

respectively. Section 5 presents the estimation procedure and the results. Section 6 examines

the effect of a change in mechanisms on the auction outcomes. Section 7 concludes.

2 Institutional details and data

This section describes the timing of events in a DB auction, institutional details critical for

modeling and model identification, and stylized facts that indicate the economic significance of

uncertain design evaluations.

2.1 Design-Build procurement auction

The procurement procedure can be decomposed into two consecutive stages: a pre-selection

stage and a bidding stage. In the pre-selection stage, the FDOT posts an advertisement on-line

which lists information about the project location, description of work, criteria for evaluating

a letter of interest, and technical qualification requirements. Then, reviewers are selected

from a pool of the FDOT employees by a department secretary, based on qualifications and

availability. Meanwhile, an interested builder voluntarily matches with a designer, and writes a

letter of interest to the FDOT. The appointed reviewers evaluate the letter of interest based on

the criteria described in the advertisement, which include past performance grades of builders

and designers, DB experience, and current capacity of builders. Then, pre-qualified applicants

are short-listed and become “bidders”.10 The identities of these bidders are posted on-line and

become common knowledge. The bidders then receive the request for proposal, which describes

detailed specification of the project and design evaluation criteria.11

In the following bidding stage, all the bidders and the reviewers meet in a mandatory pre-

proposal meeting in which the reviewers provide instructions and the scope of the project.

Following the pre-proposal meeting, the bidders send a design and a price bid to the FDOT

and treat them synonymously.
10There is no specific rule as to how many applicants should be short-listed, and the number of short-listed

bidders ranges from two to five in the sample. The original set of auction records contains one auction with one
bidder, and this auction is not used in any part of the analyses.

11Design evaluation criteria vary across auctions. Some repeatedly observed evaluation criteria include war-
ranty, innovative aspect of design, maintenance of traffic, construction methods, commitment to environmental
protection, project schedule, etc.
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in separate envelopes.12 The reviewers independently evaluate each design proposal, and the

quality score of a design is determined by the average across reviewers’ evaluations. Finally, the

price bids are opened to determine the winner of the project based on price per quality score

ratio (PQR).

Figure 1: Timeline of Events in a DB Auction

  

Advertisement 
posted

Bidders submit 
design and price

Price bids opened 
and project awarded

Firms match 
and apply

Pre-proposal 
meeting

Design evaluation 
by reviewers

Bidders 
short-listed

Reviewers 
selected

The institutional facts reveal important features from structural modeling perspectives.

First, the reviewers are all employees of the FDOT. In addition, the compensation for appointed

reviewers is salary based, and not based on each review task. Therefore, it is likely that the

incentive to exert effort in reviewing tasks is weak, and could potentially contribute to noisy

reviewers’ evaluations.

Second, past record is an important factor for an applicant to be pre-qualified as a bidder.

From a subset of DB records for which the identities of applicants are available, I find that

the number of bidders significantly differs from the number of applicants. This observation

is intriguing since decreasing competition through removing potential bidders would adversely

affect the auctioneer. This particular observation may be explained by the opportunity cost of

allocating reviewers to evaluation tasks. Indeed, these reviewers are highly skilled civil engineers

who themselves are involved in the design of projects for standard procurement auctions of the

FDOT.

Lastly and most importantly, the bidders do observe the reviewers who evaluate their designs

in a pre-proposal meeting. While the presence of a pre-proposal meeting could imply that some

of the uncertainty is resolved ex-ante, it is not clear how much information a bidder possesses

about the reviewers at the time of bidding. Knowing the identities of reviewers is meaningful

to a bidder only if some pattern or tendency can be inferred from the reviewers’ identities. The

12 Both design and price bids are usually due one to two months after the pre-proposal meeting.
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sample of DB projects shows that the majority of reviewers are appointed only once in a decade

and thus, the bidders are unlikely to make an inference about reviewers’ characteristics from

their past evaluations.

Table 1: Number of Times Bidders and Reviewers Appear in DB Auctions

Participant Mean Std Min Max

Builder 3.61 3.68 1 19
Designer 3.05 3.23 1 18
Reviewer 1.68 1.68 1 16

The sample contains 110 DB auctions pro-
cured between years 2000 and 2011. In total,
there are 53 builders, 64 designers, and 250
reviewers in the sample.

The pre-proposal meeting also casts doubt on the incentive of bidders to lobby reviewers.

Table 1 shows how frequently a particular reviewer is observed in the sample. On average, a

reviewer appears in less than two auctions, and most reviewers appear only once in a decade.

Thus, bidders play a one-shot game rather than a repeated game if they are to connect to a

particular reviewer. While the one-shot nature of the game may not preclude bidders’ incentive

to lobby reviewers, its scope can be significantly limited by reducing the benefit of establishing

a reviewer specific connection. Further, it is difficult for a reviewer to ensure the success of a

particular bidder. While the reviewer could raise the chance of winning for a particular bidder

by enlarging the gap in quality scores between the lobbying bidder and others, the reviewer

cannot ensure that the bidder wins, since he/she does not know how other reviewers evaluate

the design and what the price bids are.

In short, the reviewers from the FDOT have a weak incentive to exert effort, and have little

experience in evaluating design proposals. Past performance is an important determinant of

pre-qualification status, and review tasks are costly for the FDOT. As a bidder meets with

other bidders in a pre-proposal meeting, every bidder knows who participates. While bidders

also meet with reviewers before deciding on their bids, knowing the identities of reviewers is

unlikely to reduce uncertainty in reviewers’ evaluations.

2.2 Data

The data consist of a sample of DB auctions that took place in Florida between 2000 and

2011. Although DB is also a common practice in other states, scoring rules and point systems
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differ across these state departments of transportation. Therefore, a single department of

transportation, the FDOT, is chosen for consistency and auction record availability.

The data used in the analysis are a subset of all 152 auction records provided by the FDOT.

In particular, auctions with only one bidder, those missing FDOT’s engineer’s estimate of

project cost, a modified scoring rule, or those missing reviewers’ evaluations are all excluded

from the data.13 The selected sample is complemented by auction and bidder characteristics,

which are obtained from bid tabs and through web-scraping.14 Consequently, I am left with

110 auctions with detailed information on design evaluations. Out of the 42 excluded auctions,

28 auctions are removed for having a different auction rule, 11 auctions are removed for missing

the FDOT engineers’ estimates, two auctions are removed for missing individual reviewer level

evaluation scores, and one auction is removed for having only one participating bidder.

Figure 2 is a particular record of design evaluations for a bridge construction project, and

is one of the auctions with a large spread in design evaluations across reviewers in the sample.

The first and second rows of the table shows the identity of three bidders and five reviewers,

respectively. The first and second columns show 10 evaluation categories and weights. Each

reviewer independently reviews each quality aspect of a design proposal, and assigns a score out

of the category specific maximum score. Then, these scores are summed across all categories

to obtain the total score of a design proposal, which I define as a reviewer’s evaluation. These

total scores are averaged across reviewers to determine the quality score of a bidder’s design

proposal. The three bidders are ranked by their PQR, and the bidder with the lowest PQR

wins the project. A large variation in reviewers’ evaluations can be easily verified from the

reviewers’ evaluations. For example, the difference in total scores assigned by JD and DK is

92-68=24 points for Cone & Graham/Jacob, which is 24% of the maximum allowable points.

Also, JD ranks Cone & Graham/Jacob fifth and Johnson Bros./GAI third, while DK ranks

Cone & Graham/Jacob first and Johnson Bros./GAI fourth.

Table 3 shows the summary statistics of the key variables. Prices are adjusted for inflation,

and are expressed in 2011 USD. The average winning price is more than 16 million USD.

13The original dataset contains a variant of DB auctions in which the scoring rule involves a time incentive
component. The variant of DB auctions is a combination of DB and A+B auction studied in Bajari and Lewis
(2011).

14 The set of auction and bidder characteristics include an FDOT’s engineer’s estimate of project cost,

project types, work location, builder’s closest branch to the work location, etc. It is well known that an

engineer’s estimate of project cost is an important control for project size heterogeneity in procurement auctions

of infrastructure projects.

7



Table 2: Evaluation Scores from E7E10 Barge Canal Bridge Design Build Project

Evaluators:
MS = Reviewer 1 DK = Reviewer 4
DH = Reviewer 2 LC  = Reviewer 5
JD  = Reviewer 3

Table 3: Summary Statistics of Key Variables

Mean Std Min Max Obs

Winning PQR ($1, 000 / score point) 193 266 3.125 1125 110

Winning Price ($1, 000, 000) 16.6 22.8 0.253 103 110

Winning Quality Score (score point) 86.3 5.57 69.7 95.5 110

# Bidders / Auction 3.12 0.534 2 5 110

# Reviewers / Auction 3.82 0.800 3 6 110

PQR ($1, 000 / score point) 249 346 3.12 1945 338

Price ($1, 000, 000) 20.9 28.6 0.253 142 338

Reviewer’s Evaluation (score point) 84.3 8.19 38.6 100 1296

The summary statistics is calculated based on 110 DB auctions procured between years
2000 and 2011.
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Considering the fact that the average winning price in usual first-price low-bid auction is 7.4

million USD in Florida, DB auctions seem to be adopted for relatively large scale projects. A

quality score is the average across reviewers’ evaluations, which is the weighted sum of category

level scores. The weight assigned to an evaluation category varies across auctions even for the

same evaluation category. Since the maximum quality scores vary across auctions, every quality

score is standardized by its maximum possible score, and expressed out of 100 points. Note

that rescaling of quality scores does not introduce any problem to the analysis since the winner

selection rule is based on price per quality score, which is scale invariant to auction specific

rescaling.

Table 4: Distribution of Winning Price and Quality Score

Lowest Price Non-Lowest Price Total

Highest Quality Score 38 19 57

(34.5%) (17.2%) (51.8%)

Non-Highest Quality Score 51 2 53

(46.3%) (1.8%) (48.1%)

Total 89 21 110

(80.9%) (19.1%) (100%)

Each row represents the frequency distribution of the project winners with the (non-
)highest quality score. Each column represents the frequency distribution of the
project winners with the (non-)lowest price.

Table 4 shows how many winners received the non-highest design quality score, and how

many winners bid the non-lowest price. It is clear that neither lowest price bidder nor highest

quality score bidder always win. Indeed, the majority of the winners do not receive the highest

quality score.

To see how much variation exists in price and reviewers’ evaluations, consider the fol-

lowing simple decomposition of variance in the natural logarithm of price, reviewer’s evalu-

ation, and price per reviewer’s evaluation. Table 5 shows the decomposition of variance in the

above three variables into between-auction, within-auction-between-bidder, and within-bidder-

between-reviewer. The most significant finding here is that the within-bidder-between-reviewer

variation is by far the largest contributor to the total variation in reviewers’ evaluations. Within-

auction-between-bidder variation in reviewers’ evaluations, which may capture the degree of

vertical design quality differentiation, is much smaller, and accounts for 31% of the total vari-

ation of reviewers’ evaluations. The relatively large within-bidder-between-bidder variation in
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reviewers’ evaluations may be indicative of the size of evaluation uncertainty that bidders face

at the time of bidding.

Table 5: Variance Decomposition of Price Bids and Reviewers’ Evaluations

Variables Between-Auction
Within-Auction

Between-Bidder

Within-Bidder

Between-Reviewer

ln(Price) 1.43 0.158

(90%) (10%)

ln(Reviewer’s Evaluation) 0.0389 0.0516 0.0779

(23%) (31%) (46%)

ln(Price / Reviewer’s Evaluation) 1.43 0.170 0.0779

(85%) (10%) (5%)

Obs 110 338 1296

The figures in the table represent estimates of standard deviations. Standard deviations are calculated at
each level of hierarchy, and a column corresponds to a particular level in the hierarchy.

3 Structural model of a DB auction

I construct a model where bidders compete over price and design quality under uncertain design

evaluations and uncertain rivals’ bids. The model incorporates three types of uncertainty: i) a

bidder is uncertain about what its rivals’ bids are, ii) how its design proposal is evaluated, and

iii) how its rivals’ designs are evaluated.

An efficient bidder, who submits a low PQR, experiences a lower probability of winning,

while an inefficient bidder, who submits a high PQR, may win with a higher probability upon

an increase in evaluation uncertainty. The asymmetric effects of evaluation uncertainty on

bidding incentives across different types of bidders, together with strategic uncertainty, makes

the equilibrium effects of evaluation uncertainty on bidders’ behavior unclear.

In addition to strategic uncertainty, the model introduces multi-dimensional types in a

bidder’s cost structure in order to account for complexity in bidding strategies. Suppose that a

bidder’s cost consists of a fixed cost of implementing a project, and a variable cost of providing

a quality project. On one hand, a bidder consisting of a low fixed cost and a high variable cost

may take a low-price-low-quality strategy. On the other hand, a bidder with a high fixed cost

and a low variable cost may take a high-price-high-quality strategy, exploiting their comparative
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advantages. However, these two completely different types of bidders may end up with very

similar objective PQR bids, and generating complex bidding strategies is non-trivial without

multi-dimensional types.

In the following, the multi-dimensional choice problem of a bidder with multi-dimensional

types is reduced to a one dimensional choice problem of a bidder with a single index, as in

Asker and Cantillon (2008). A Bayesian Nash Equilibrium of the model is characterized, and a

numerical exercise is provided to shed a light on how bidders respond to a change in evaluation

uncertainty.

3.1 Model

Consider N ≡ |N | risk neutral bidders where N denotes the set of bidders in a given auction.

For the sake of notational simplicity, I suppress the auction subscript a in this section. Let

{pi, qi} ∈ R2
+ be the price bid, and the objective quality of the design proposed by bidder i ∈ N ,

respectively. Also, let bi ≡ pi/qi be the objective PQR bid of bidder i, which is assumed to be

responsive only within the support [0, B] ⊂ R+, and the government rejects proposals outside

the bounds.15 To capture bidders’ comparative advantage in designing, bidder i is characterized

by a variable cost type, vci, and a fixed cost type, fci.

Now, define the ex-post payoff of bidder i by:

πposti =

{
pi − vciC(qi)− fci if bidder iwins

0 otherwise,

where vciC(qi) and fci consist of variable and fixed cost of delivering the project at quality level

qi. An assumption implicitly made here is that a bidder is committed to provide the quality it

proposed with no quality shading.16 C(.) is increasing, convex, and differentiable (i.e., Cq > 0,

Cqq > 0). The convexity is necessary to generate a smooth substitution between price and

design quality given the winner selection rule. C(.) is also common across bidders.17 Let

15An interpretation of the boundedness assumption is that the government does not accept a bid that goes
above the FDOT’s reserve price, which represents FDOT’s willingness to pay for the project at hand.

16FDOT’s engineers monitor construction progress, and a contractor that does not deliver the planned project
properly may not pre-qualify for subsequent design-build projects.

17 Later in specifying the econometric form of the model, I allow for vci and fci to consist of observed and

unobserved components from the point of view of bidder i’s rivals. In this section, I assume that vci and fci are

entirely private information of bidder i in this section without loss of generality, and for expositional simplicity.
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ci ≡ {vci, fci} ∈ Ti ⊂ R2
+ and c−i denote the vector of bidders’ types in the auction excluding

bidder i. Bold cases are used for vectors (e.g., b ≡ (b1, , , bi, , , bN), c−i ≡ (c1, , , ci−1, ci+1, , , cN)

). Also, let f(c−i| ci) denote the joint distribution of c−i conditional on the realization of bidder

i’s type, which is differentiable everywhere over its compact support.

The specification of the ex-post payoff function assumes zero entry costs while preparation

of a design could be costly in reality. In other words, the model assumes the major cost of

providing a quality project comes from implementation of a quality project, and not designing

itself. Zero entry cost assumption here could alternatively interpreted as every bidder incurring

the same amount of entry cost, but compensated by the auctioneer for the entry cost. Indeed,

the FDOT provides bidders with stipend to compensate for the cost of preparing a design

proposal in many DB auctions.

Define evaluation noise as the total amount of subjectivity that a set of reviewers introduce

into a quality score of bidder i’s design proposal. Also, define evaluation uncertainty as the

degree of dispersion in evaluation noise. Assume that evaluation noise, wi, generates realization

of a quality score by multiplicatively affecting qi, and is independently distributed from design

quality. Let Fw(w) be the joint distribution function of evaluation noise wi. The probability of

winning conditional on a vector of PQR bids, G̃i(bi), is given by:

G̃i(b) =

ˆ
w

1{bidder i is the winner given b}dFw(w)

=

ˆ
w

1

{
pi
qiwi

<
pj
qjwj

, ∀ j 6= i

}
dFw(w)

=

ˆ
w

1 {ln(bi)− ln(wi) < ln(bj)− ln(wj) , ∀ j 6= i} dFw(w).

As bidder i does not observe the private information of its rivals, bidder i’s probability of

winning is obtained by integrating G̃i(b) over the distribution of bidder i’s rivals’ strategies.

Let ψ−i(c−i) denote a vector of bidder i’s rivals’ PQR strategies. Then:

Gi(bi,ψ−i) ≡
ˆ
c−i

G̃i(bi,ψ−i(c−i)) f(c−i|ci) dc−i.

Finally, bidder i’s interim expected payoff conditional on participation is defined as πinti ≡
Gi(bi,ψ−i) π

post
i . The problem of bidder i is then defined as:

max {maxpi,qi π
int
i s.t. pi/qi = bi ∈ [0, B], 0} . (1)
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Let {pBRi (ci), q
BR
i (ci)} be a best response correspondence of bidder i of type ci with an arbitrary

belief about its rivals’ strategies. A Bayesian Nash Equilibrium is a state in which every bidder’s

belief is consistent with the best responses of its rivals. A Bayesian Nash Equilibrium is called

“pure” if every bidder’s strategy is a deterministic function of own type.

Definition 1. A Pure Strategy Bayesian Nash Equilibrium consists of a profile of best response

functions {pBR(c),qBR(c)} in which every bidder i ∈ N believes its rivals bid according to

{pBR
−i (c−i),q

BR
−i (c−i)}.

This two-dimensional decision problem can be transformed into a one-dimensional choice

problem. Consider the optimization problem in (1) with an additional constraint that bi = α

for some α ∈ [0, B]. This constrained optimization problem has a unique solution, and the

values of price and objective design quality that solve this problem are given by the following

closed form expressions:

qi(α) = C−1
q (α/vci) (2)

pi(α) = qi(α)C−1
q (α/vci), (3)

where C−1
q (.) is the inverse of Cq(.).

Proposition 1. For any given bi = α ∈ [0, B], there exists a unique pair of {pi, qi} ∈ R2
+ that

maximizes i’s interim expected payoff conditional on participation.

Proof in Appendix. This proposition establishes that pricing and design decisions are uniquely

determined for any given PQR. It follows that the problem of a bidder can be rewritten as

one-dimensional choice problem:

maxbi∈[0,B] Gi(bi,ψ−i) (pi(bi)− vciC(qi(bi))− fci),

where pi(.) and qi(.) are the functions defined in (2) and (3), respectively. Now, I make a

assumption on C(.) to summarize multi-dimensional types of a bidder with a single index.

Assumption 1. The design cost function C(.) is homogeneous of degree γ > 1.

Assumption 1 implies scale invariance and allows for sorting of bidders in single index.
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Proposition 2. Given Assumption 1, equilibrium PQR strategy of bidder i is a sole function

of a single index, ei ≡ fci/C
−1
q (1/vci):

ψi(ei) ≡ arg max
bi∈[0,B]

Gi(bi,ψ−i) (pi(bi)− vciC(qi(bi))− fci)

= arg max
bi∈[0,B]

C−1
q (1/vci)Gi(bi,ψ−i) (u(bi)− ei)

= arg max
bi∈[0,B]

Gi(bi,ψ−i) (u(bi)− ei) ∀ i ∈ N ,

where u(bi) ≡ biC
−1
q (bi)− vciC(C−1

q (bi)).

Proof in Appendix. The single index is an increasing function of vci and fci. Suppose, for

example, that the quality cost function is a power function, such that C(q) = qγ with γ > 1. γ

captures the weight assigned on vci and fci within ei, and vci and fci would equally contribute

to ei when γ = 2 (i.e., ei = vci fci). In the extreme case where γ is substantially larger than 2,

ei is essentially determined by fci. For the rest of the analyses, ei is referred to as the efficiency

type of bidder i.

The following technical assumptions on the distribution of evaluation noise wi is made in

order to simplify equilibrium characterization.

Assumption 2. (Smooth Density and Independence): Log evaluation noise, ln(wi), is drawn

independently from a smooth density with an infinite support.

Assumption 3. (Profitable Participation): Every bidder has a chance to make some profit

(i.e., B > u−1(ē) where ē is the most inefficient bidder).

Assumptions 2 and 3 together guarantee differentiability of the probability of winning function

and participation of every bidder.18

Proposition 3. Equilibrium Existence, Monotonicity, and Continuity: There exists a pure

strategy Bayesian Nash Equilibrium. In any equilibrium, ψi(ei) is non-decreasing and continu-

ous in ei ∀ i ∈ N in the interior of the domain.

Proof in Appendix. Let {pψ(c), qψ(c)} be the corresponding price and design quality strategy

profile in an equilibrium. If bidders’ strategies are interior, which I assume for the rest of

18Differentiability of the probability of winning function with respect to own PQR bid is guaranteed regardless
of rivals’ bidding strategies since evaluation noise smooth out the probability of winning function even if rivals’
bids are bunched. Also, participation is guaranteed since a bidder faces a positive probability of winning due
to evaluation uncertainty no matter how large its PQR bid is.
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the paper, the first order optimality condition from the above one-dimensional choice problem

together with the ratio of (2) and (3) gives the following two equations:

ψi(ei) = vciCq(q
ψ
i (ci)) (4)

− uψ(ψi(ei))

u(ψi(ei))− ei
=

gi(ψ(e))

Gi(ψ(e))
, (5)

where gi(ψ) ≡ ∂Gi(ψ)/∂ψ and ψ(e) is an equilibrium PQR strategy profile.19 Note that price

per quality is the price a bidder charges for a unit of design quality. Thus, condition (4) says

that bidder i’s offer of price of design quality is set equal to the marginal cost of providing

an additional design quality. This condition is intuitive. Suppose that pi/qi < vciCq(qi) for

some bidder i, such that bidder i is offering a unit of design quality at the price lower than its

marginal cost. Then, bidder i could reduce both its price and design quality by proportionally

the same amount to keep its price per quality constant, and yet bidder i can reduce its marginal

cost, which must make bidder i better off. Condition (5) shows that the marginal cost of raising

PQR is equalized to its marginal benefit, capturing the trade-off between the chance of winning

and the ex-post winning payoff, which is analogous to the first order condition in a model of

first-price sealed-bid auction in the independent private value paradigm.

Note that condition (4) is independent of the distribution of evaluation noise. If a bidder

increases its PQR bid upon a change in the distribution of evaluation noise, then it responds by

producing a design of higher quality, and there is no way to lower its price while raising both

its PQR and its design quality. Proposition 4 formalizes this observation.

Proposition 4. Let τ be any parameter that affects the winner selection outcome, but does

not have any effect on bidders’ exogenous costs. Then, sign
(
dψi(ei)
d τ

)
= sign

(
d pψi (ci)

d τ

)
=

sign
(
d qψi (ci)

d τ

)
. In other words, a cost-irrelevant parameter τ induces positive co-movements

in bidders’ strategies.

Proof in Appendix. τ can be anything that influences strategic behavior, but does not enter a

bidder’s cost. For instance, suppose that τ represents the number of participating bidders in an

auction. An intense competition may lower the price, but it may also deteriorate the quality,

invoking a race to the bottom.

An important application of this proposition is when τ represents a measure of uncertainty

in reviewers’ evaluations. Suppose that a bidder increases its price per quality upon an increase

19Condition (4) is the ratio of the first order conditions with respect to price and design quality. I obtain
condition (5) by (i) representing price and quality choices as a function of PQR strategy ψi(ei) in the expected
profit function πint

i , and then (ii) taking the first order condition with respect to ψi.
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in evaluation uncertainty. An increase in its PQR bid implies that each unit of design quality

is offered at a higher price. Therefore, the bidder strategically substitutes design quality for

price, producing a design of higher quality at a higher price. The improvement in quality is

not necessarily desirable from an efficiency perspective. Consider condition (4), which equalizes

the average price of design quality with the bidder’s marginal cost of providing design quality.

As a bidder always sets the price per quality larger than its average cost of providing a design

quality, the bidder’s marginal cost is necessarily greater than the average cost. Therefore, every

bidder overproduces design quality relative to its efficient scale under the DB auction rule. An

increase in design quality comes with a larger average cost of design quality.

3.2 Numerical exercise

While a theoretical characterization of bidders’ equilibrium behavior is difficult, a numerical

exercise may shed a light on the effects of evaluation uncertainty on bidders’ behavior of different

types. I also demonstrate the equilibrium effect of evaluation uncertainty on the distribution

of price and design quality bids. All of the parameter values in this numerical exercise are set

equal to the estimates obtained from a structural estimation of the model.20 As equilibrium

uniqueness is not guaranteed in the model, an equilibrium is computed using a homotopy

method. An algorithm for computing an equilibrium is provided in Appendix.

Figure 2 illustrates the effect of evaluation uncertainty on the probability of winning func-

tion keeping rivals’ strategies constant. An increase in evaluation uncertainty flattens out the

probability of winning function. There are two distinct channels where increased randomization

affects the winner selection process.

The first channel is the level effect that is heterogeneous across different types of bidders.

Suppose there is an exogenous increase in evaluation uncertainty. Inefficient bidders now expect

to win the project with a higher chance since these bidders have little chance of winning without

luck. Therefore, inefficient bidders have an incentive to shade their bids, and enjoy a higher

payoff upon winning. In contrast to inefficient bidders, efficient bidders experience an exogenous

decrease in their chance of winning, generating an incentive to lower its PQR bid to ensure that

they win. Therefore, the level effect generates a greater dispersion of PQR bids and associated

choice of price and design quality bids by Proposition 4.

20 To keep the computation of equilibrium simple, I assume that ln(wi) follows Type 1 Extreme Value

distribution. This assumption allows for a closed form expression for the probability of winning function Gi(.)

that resembles Tullock’s Contest Success Function.
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The second channel is the slope effect that is symmetric across different types of bidders.

Since an increase in evaluation uncertainty lowers the marginal effect of lowering PQR on a

bidder’s chance of winning, it weakens a bidder’s incentive to be competitive. Consequently,

increased randomization in winner selection generates a higher PQR for all types of bidders.

Figure 3 illustrates the equilibrium effect of evaluation uncertainty on the distribution of price

and design quality bids.

The numerical exercise indicates that, on average, evaluation uncertainty increases price,

but also improves design quality. In addition, an increase in evaluation uncertainty is associated

with a larger dispersion in both price and design quality. The greater dispersion in bids in turn

leads to a greater amount of uncertainty in the auction outcomes from the point of view of the

auctioneer.

The above findings have some important economic implications. First, evaluation uncer-

tainty, on average, can be seen as a transfer to the contractor. As luck plays a larger role

in determining the winner of a project, bidders have less incentive to provide a competitive

offer, leaving larger rents to bidders on average. Second, an increase in evaluation uncertainty

comes with an additional cost of increased uncertainty in auction outcomes. If the auctioneer

is budget constrained, an unexpectedly high winning price for a very large project may result

in the cancellation of the procurement itself. Thus, a mechanism that reduces evaluation un-

certainty may become a valuable option. I propose a simple auction mechanism that achieves

this objective in Section 6.
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Figure 2: The Effects of Uncertain Design Evaluation on Probability of Winning
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Figure 3: The Effects of Uncertain Evaluations on Equilibrium Bidding Strategies
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4 Identification

Identification of the model is challenging due to unobserved design quality choices. More

specifically, the econometrician does not observe design quality, but only observes some noisy

signals of quality. As design quality is unobserved, the probability of winning function Gi and

its density gi cannot be directly evaluated from the data, precluding the standard inversion

approach pioneered by Guerre, Perrigne, and Vuong (2000).21 The identification problem is

made more complex due to unobserved auction and reviewer heterogeneities, which may be

confounded with the degree of evaluation uncertainty. Further, the set of bidders and reviewers

are chosen endogenously by the auctioneer. Therefore, a plausible identification strategy needs

to deal with selection problem.

Public procurement auctions of infrastructure projects involve a substantial amount of un-

observed auction heterogeneity: auction heterogeneity observed by all participating bidders,

but unobserved by the econometrician. As demonstrated by Krasnokutskaya (2011), ignoring

the presence of unobserved auction heterogeneity exaggerates the dispersion of bids related to

bidder heterogeneity. The exaggerated dispersion of bids in turn underestimates the impact of

evaluation uncertainty on bidding strategies since evaluation noises may swap bidders’ rankings

only if bidders are in a close competition, and bidders are likely to be in a close competition

when bidders’ types are densely distributed.

Unobserved reviewer heterogeneity also plays a crucial role in identifying the degree of eval-

uation uncertainty. Reviewers may differ in their evaluation standards, and a lenient reviewer

may assign a high score to every design, which exerts little effect in determining the rankings

of bidders. The econometrician would exaggerate the degree of evaluation uncertainty if unob-

served reviewer heterogeneity is ignored, confounding with idiosyncratic evaluation noise that

can swap the rankings of design proposals.

Selection of bidders and reviewers by the auctioneer is not a random process in a DB auction.

If the auctioneer is aware of the effect of evaluation uncertainty on bidding strategies, then the

auctioneer may tend to let more reviewers and bidders into an auction for a complex project

in order to mitigate the effect of evaluation uncertainty on auction outcomes. Such selection

process would imply that bidders are inefficient on average in a project with a larger number

of bidders and reviewers relative to a project with a fewer number of bidders and reviewers.

To address this selection issue, I allow for the distribution of bidders’ private information to

depend on the number of bidders and reviewers in an auction as in Campo et al. (2011). As

21Estimation of design quality by the average reviewers’ evaluation faces an incidental parameter problem,
since each auction involves only a few reviewers.
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the model primitives are not identified without specifying a functional form for C(.), I assume

a simple power function for C(.) for the rest of the paper.22

Identifying Assumption 1. C(.) is a power function:

C(q) = qγ,

where γ > 1 for convexity.

The rest of the section is organized as follows. First, I describe the information structure of

bidders: what bidders know about a project and their rivals at the time of bidding. Second, I

introduce unobserved reviewer heterogeneity and evaluation noise into the model without un-

certain evaluations. Lastly, I derive reduced form expressions that characterize the equilibrium

bidding behavior, and show how to identify the primitives of the model semiparametrically.

4.1 Information structure on bidders’ types

This subsection specifies the information structure, describing what bidders observe at the time

of bidding. The econometrician has an access to a vector of exogenous auction characteristics,

Za, which may include the engineer’s estimate of the project cost and project types (e.g., road,

bridge, building construction, etc). While the model in Section 3 abstracts from information

asymmetry between bidders and the econometrician, empirical results can be significantly influ-

enced by an assumption on the information structure. I.A.2 below makes explicit who observes

which component of a particular bidder’s cost.

Identifying Assumption 2. Bidders’ types are given by:

vcia = exp{Zaβv + θva + εvia} (6)

eia = exp{Zaβe + θea + εeia}, (7)

where Za is a vector of observed characteristics known to bidders and also to the econometrician.

θva and θea are both unobserved auction heterogeneity: observed by all participating bidders but

unobserved by the econometrician. θva and θea are assumed to be independent of Za, ε
v
ia and εeia.

εvia and εeia are both private information observed only by bidder i, which are independently and

22C(.) can be identified from the data if both C(.) and the distribution functions of bidders’ private infor-
mation are parametrized as in Campo et al. (2011). Here, I assume that the cost function is known to the
econometrician, and identify the distribution of primitives nonparametrically.
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identically distributed. I.A.2 implies multiplicative separability of bidding strategies in each

cost component as shown in the following proposition.

Proposition 5. Let {q(Z, θ, εv, εe), b(Z, θ, εe)} denote an equilibrium strategy profile of bid-

ders. Consider a monotone pure strategy equilibrium characterized by a set of first-order condi-

tions (4) and (5). Then, the equilibrium reduced form PQR strategies are additively log-separable

in every cost component. Further, structural equation (4) implies that pricing strategies can also

be expressed as a function of the decomposed PQR strategies:

ḃ(Za, θa, ε
e
ia) = Zaβ̃e + (1/γ0) θea + ṡia (8)

q̇(Za, θa, ε
v
ia, ε

e
ia) = Zaβ̃v + (1/γ) θea + γ1 (ṡia − θva − εvia), (9)

∀ i ∈ N where ẋ ≡ ln(x) for all variable x, ṡia ≡ ḃ(0, 0, εeia), γ0 ≡ γ/(γ − 1), γ1 ≡ 1/(γ − 1),

β̃e = (1/γ0) βe, and β̃v ≡ (1/γ) βe − γ1 βv.

Proof in Appendix. Proposition 5 shows that bidding strategies are decomposed into a sole

function of εeia with the remainder appearing in the form of the primitives, which significantly

simplifies the identification problem. As the design quality is unobserved by the econometrician,

I provide the link between reviewers’ evaluations and design quality next.

4.2 Unobserved reviewer heterogeneity and evaluation noise

Recall that, instead of design quality qia, the econometrician observes each reviewer’s evaluation

of each bidder’s design proposal, {q0
ria : r = 1, 2, ..., Ra}, where r is the reviewer subindex, and

Ra is the number of reviewers in auction a.

Reviewer heterogeneity is decomposed into three components: measure heterogeneity ηa,

unobserved reviewer heterogeneity µra, and evaluation noise ξria. Measure heterogeneity may

capture heterogeneity in scoring difficulty: some auctions may be more difficult for bidders

to score high than other auctions. Unobserved reviewer heterogeneity captures standard dif-

ferences across reviewers, such as reviewers’ leniency in design evaluations. Lastly, evaluation

noise captures idiosyncratic evaluations of design proposals. I.A.3 describes the link between

design quality and reviewers’ evaluations.

Identifying Assumption 3. Reviewer r’s evaluation of bidder i’s design, q0
ria, is noisy but an

unbiased estimate of true quality qia:

q̇0
ria = q̇ia + ẇria,
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where ẇria ≡ ηa +µra + ξria. Note that ηa is another form of unobserved auction heterogeneity,

which has nothing to do with bidders’ costs. Both measure heterogeneity and unobserved

reviewer heterogeneity capture design rank preserving variation in evaluations. That is, a swap

in design rankings does not occur for these two types of heterogeneities since realizations of

these random variables affect evaluations of different design proposals equally.

With I.A.3, equation (8) and (9) can be rewritten in terms of price per reviewer’s evaluation

and reviewer’s evaluation, which is observed to the econometrician.

ϕ̇ria = Zaβ̃f + (1/γ0) θea + ṡia + ẇria (10)

q̇0
ria = Zaβ̃v + (1/γ) θea + γ1 (ṡia − θva − εvia) + ẇria, (11)

where ϕria ≡ pia/q
0
ria (i.e., price per reviewer r’s evaluation). I define (10) and (11) as a Reduced

Form Factor (RFF) model since the two equations are represented as functions of the primitives

of the model, and are linked through the latent factors. Note that additive separability of ẇria

also follows from the model, and ξria does not enter bidders’ states as bidders do not know how

reviewers evaluate designs ex-ante.23

Lastly, I state a technical assumption which guarantees nonparametric identification of the

distribution functions of the random components in (10) and (11).

Identifying Assumption 4. The probability density functions of the individual random com-

ponents, fx ∀x, are continuously differentiable and strictly positive on the interior of (x, x̄).

Given I.A.1-I.A.4, the primitives of the model to be identified are: (i) the distribution of

unobserved reviewer heterogeneity Fµ, (ii) the distribution of evaluation noise Fξ, and (iii) the

distribution of variable cost and efficiency type, Fv and Fe, respectively.24 The distributions

of Fs, Fv, Fµ, and Fξ are nonparametrically identified from the RFF model. To identify Fe, I

first obtain the marginal distribution of sia, Fs, from the RFF model. Then, I recover Fe from

the first order condition (5) and the set of distributions {Fs, Fv, Fµ, Fξ}. I elaborate on the

identification of the model below.

23The identification arguement here does not rely on whether ηa and µra are observed to bidders or not.
24The joint distribution of unobserved auction heterogeneities is neither identified nor the focus of the analysis

here. The idea is to net out all sorts of unobserved auction heterogeneities to exploit within-auction variation
in bids.
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4.3 Semiparametric identification of the RFF model

In order to identify the degree of evaluation uncertainty from a bidder’s point of view, I isolate

the part of a reviewer’s evaluation that bidders know at the time of bidding from the part they

do not. The RFF model exploits the fact that bidders do not observe reviewers’ evaluations of

their designs at the time of bidding, and also reviewers do not observe bidders’ price bids at the

time of evaluation. In particular, the RFF model assumes that disagreement among reviewers

on the design quality of a proposal is unknown to the bidder, but the part of design quality

that is agreed among reviewers is known to the bidder at the time of bidding.

Note that the notion of design quality here is broad in the sense that the latent factor

captures all the information that reviewers have about bidder i at the time of evaluation. That

is, if all reviewers agree that a particular design proposal is of high quality, then the design is

deemed to be of high quality. Therefore, a bidder’s reputation, or the impression that reviewers

receive from a particular bidder in the pre-proposal meeting, can be regarded as a part of design

quality as long as reviewers agree and a bidder knows what reviewers know about themselves.

Proposition 6. Given I.A.1-I.A.4, {Fµ, Fξ, Fs, Fv, Fe} are all nonparametrically identified.

For simplicity, I omit the observables, Za, in showing the nonparametric identification of the

RFF model below.25 The identification argument here closely follows Carneiro, Hansen, and

Heckman (2003).

First, the measure of evaluation uncertainty is identified by exploiting the fact that multiple

reviewers evaluate multiple designs in an auction. Intuitively, the identification of evaluation

noise comes from a discrepancy in reviewers’ evaluations net of reviewer specific characteristics

(e.g., leniency):

(ϕ̇ria − ϕ̇r′ia) = (ṡia − ṡi′a) + (ξria − ξr′i′a) for i′ 6= i. (12)

As the left hand side of (12) is observed, and the right hand side is a sum of i.i.d. random

variables, Fs and Fξ are both nonparametrically identified by deconvolution. Similarly,

(ϕ̇ria − ϕ̇r′ia) = (µra − µr′a) + (ξria − ξr′ia) for r′ 6= r. (13)

Since the distribution of the LHS of (13) is known, Fµ can also be identified by deconvolution.

25 The proof trivially goes through with the observables included.
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Second, bidder heterogeneities can also be identified by taking into account the correlation

between εvia and εeia. As γ is known and ẇria − ẇri′a = ξria − ξr′ia, it follows that:

(q̇0
ria − q̇0

ri′a)− γ1 (ϕ̇ria − ϕ̇ri′a) = γ1 (εvia − εvi′a) + (1− γ1) (ξria − ξr′ia) for i′ 6= i,

and so the marginal distribution of εvia, Fv, is identified again by deconvolution. This completes

the identification of the RFF model.

Finally, the distribution of efficiency private information Fe can be identified using equation

(5) by integrating over Fs, Fµ, and Fξ, as in Guerre, Perrigne and Vuong (2000), such that:

κ(γ)

(
sγ0ia + γ0 s

γ1
ia

Gia(sia,ψ−ia)

gia(sia,ψ−ia)

)
= exp{εeia}, (14)

where κ(γ) ≡ γ−γ1 − γ−γ0 . Thus, Fe can be identified from repeated auctions.

There are several remarks to be made. First, the distribution functions Fe and Fv depend on

the number of bidders and reviewers as the probability of winning function Gia and gia depends

on the number of bidders and reviewers. I denote the distribution of bidders’ efficiency private

information by Fe(.;N,R) to make explicit the dependency of the distribution on the number

of bidders and reviewers. Second, the identification strategy deployed here does not require any

of the unobserved auction heterogeneity to be identified as all the unobserved auction hetero-

geneities are differenced out. Lastly, Fs, Fµ, and Fξ are all identified without the knowledge

of γ while Fv cannot be recovered without the knowledge of γ. As the equilibrium price and

quality choices of bidders in a counterfactual experiment can be significantly influenced by an

assumed value of γ, I present estimates and conduct counterfactual experiments with varying

values of γ.

5 Estimation

While the estimation steps closely follow the identification argument, data specific issues need

to be considered. In particular, estimating the distributions of the primitives for all possible

combinations of the number of bidders and reviewers places a burden on the small sample.

To deal with this issue, I assume a single equilibrium bid distribution in the data, and recover

the distributions of the primitives that rationalize the observed bids’ distributions. While the

assumption of single bid distribution may be strong, I show that this assumption is consistent

with the observed distribution of bids.

I further impose joint normality assumption on the distributions of ṡia and εvia given the
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small sample. This parametrization indeed allows for potential corelation between εvia and εeia

in a parsimoneous manner.

I estimate the parameters of the RFF model by Method of Moments for varying parameter

values for γ, and then recover the distribution of efficiency private information Fe via simulation

of the RFF model combined with the first order optimality condition in (14).

5.1 Estimation steps

Step 1: A method of moments estimator for the RFF model.

Let σj denote the variance of unobservable j ∈ {s, µ, ξ, v, e}, and denote the within-bidder type

covariance by δ ≡ Cov(εvia, ṡia). First, I estimate the equilibrium bidding strategies in (10) and

(11) by OLS, partialling out the effects of observables. Then, I obtain OLS residuals (denoted

by q̂ria and ϕ̂ria) and estimate the variance components by the sample variance covariances

specified below:

σ̂ξ = M [q̂2
ria]−M [q̂riaq̂ri′a] +M [q̂riaq̂r′i′a]−M [q̂riaq̂r′ia]

σ̂s = M [ϕ̂riaϕ̂r′ia]−M [ϕ̂riaϕ̂r′i′a] (15)

σ̂µ = M [q̂riaq̂ri′a]−M [q̂riaq̂r′i′a]

δ̂ = M [ϕ̂riaϕ̂r′ia]−M [ϕ̂riaϕ̂r′i′a]− (M [ϕ̂riaq̂r′ia]−M [ϕ̂riaq̂r′i′a])/γ1

σ̂v = (M [q̂riaq̂r′ia]−M [q̂riaq̂r′i′a])/γ
2
1 − σ̂s + 2 δ̂

where M [.] denotes sample mean.

Step 2: A simulated estimator for Fe(.;N,R).

The second step of the estimation procedure involves simulation. (i) Draw a pseudo random

variable s1k from F̂s, (ii) numerically integrate over the distribution of rivals’ strategies s−1l =

[s2kl, s3kl, ..., sNkl] and evaluation noise wl = [w1k1, w2kl, ...., wNkl] by repeatedly drawing from

F̂−s and F̂w where I set L = 103 to obtain the estimate of the probability of winning for a

given number of bidders N and reviewers R by:

Ĝ(s1k;N,R) =

ˆ ˆ
1{ṡ1k − ẇ1kl < ṡjkl − ẇjkl for j 6= 1 ∈ N}dF̂−sdF̂w.

Similarly, ĝ(s1k;N,R) can be obtained by numerically differentiating Ĝ(s1k;N,R). Note here

that Ĝ(s1k;N,R) is obtained via simulation, and N and R are not taken from the data. (iii) I
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obtain the simulated efficiency private cost, ε̂e1k, by evaluating equation (14).

κ(γ)

(
sγ01k + γ0 s

γ1
1k

Ĝia(s1k;N,R)

ĝia(s1k;N,R)

)
= exp{ε̂e1k}. (16)

Iterate (i) through (iii) K times (where I set K = 103) to estimate the distribution of ε̂e1k by

repeatedly evaluating (16). I compute F̂e(.;N,R), which is the distribution of ε̂e1k for all possible

combinations of hypothetical number of bidders and reviewers predicted by the model.

5.2 Estimation results

Table 6 shows estimates of variance components for varying level of γ. The vector of observed

auction characteristics includes an engineer’s estimate of project cost, the number of bidders

and reviewers in the auction to capture the effect of competition and evaluation uncertainty.

Project type dummies control for observed auction heterogeneity.26

The first significant finding is the large estimate of evaluation uncertainty σξ. Evaluation

uncertainty is as large as 39% of the within-auction heterogeneity in PQR bids σs. While not

shown in Table 6, σs would be significantly overestimated if unobserved auction heterogeneities

are not taken into account. A consistent estimation of σs is particularly relevant in the context

of the analysis here since evaluation noise is likely to swap the ranking of bidders only in a close

competition. Therefore, overestimating the dispersion in private information of bidders results

in an underestimation of the effect of evaluation uncertainty on bidders’ behavior.

Another important observation here is the close positive relation between the values of γ

and the estimates of σv. Intuitively, a large variation in within-reviewer variation in evaluations

across bidders can be explained either by (i) a large variation in vci: a large variation in design

quality resulting from bidder heterogeneity in the cost of design or (ii) a small value of γ: a

large variation in design quality resulting from a low elasticity of substitution between price

and design quality. Therefore, the estimate of σv is increasing in γ to account for the extent of

variation in design quality present in the data.

What seems puzzling at first glance here is the insignificant coefficient estimate on the

number of bidders. If competition is all it captures, the insignificant estimate is intriguing.

However, the number of bidders may be correlated with the distribution of bidders’ private

information. For example, if the FDOT observes project complexity, and if the FDOT tends to

26While the model does not predict that bidders’ strategies are additively log-linear in bidder level character-
istics, I control them to approximate observed bidder heterogeneity when estimated. Project types are classified
into road, bridge, building, and others.
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allow more applicants to participate in an auction for a more complex project, then the effect

of competition on pricing and design decisions can be completely offset by project complexity.

That is, bidders are on average inefficient at implementing a complex project, and therefore

the effect of competition on bidding strategies is hidden by project complexity. Thus, the

coefficient estimate on the number of bidders captures the total effect of competition and

FDOT’s selection.27 For the same reason, correlation between the number of reviewers and

bidders’ behavior can be hidden by project complexity. Note that the estimation result is

consistent with the assumption of single equilibrium bid distribution.

Figure 4 shows the distribution of bidders’ private cost information for varying numbers of

bidders and reviewers. Intense competition and a large evaluation uncertainty are associated

with a right shift of the distribution of private cost information. That is, the more bidders or

more reviewers there are, the more inefficient each bidder is on average. This finding is in line

with the estimation result obtained from the RFF model. After computing the equilibrium

using the estimated distribution of efficiency level, I find no significant difference in mean bids

across the number of bidders. That is, the competition effects on pricing and design strategies

are offset by the asymmetry in the distribution of private information. Therefore, the structural

model here is consistent with the fact that the number of bidders and the number of reviewers

are insignificantly correlated with both pricing and design strategies in the RFF model.

27Another potential explanation for the statistically insignificant correlation between the number of bidders
and bids can be found in Somaini (2011) where it is shown that competition does not necessarily induce more
aggressive bidding in the presence of common value signals. While Somaini (2011) shows an interesting insight,
I abstract from common value aspect of procurement auction in this paper.
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Table 6: Reduced Form Factor Model: Estimation Results

(i) γ = 4 (ii) γ = 8 (iii) γ = 12
ϕ̇ria q̇0

ria ϕ̇ria q̇0
ria ϕ̇ria q̇0

ria

# of Bidders / Auction .0416 -.00637 .0416 -.00637 .0416 -.00637
(.0566) (.0127) (.0566) (.0127) (.0566) (.0127)

# of Reviewers / Auction .0466 .00077 .0466 .00077 .0466 .00077
(.0411) (.00838) (.0411) (.00838) (.0411) (.00838)

σs , σv .0148 .0443 .0148 .137 .0148 .289
(.00163) (.00537) (.00163) (.0194) (.00163) (.0433)

σξ , σµ .00583 .00195 .00583 .00195 .00583 .00195
(.000487) (.000308) (.000487) (.000308) (.000487) (.000308)

δ .0213 .0215 .0305
(.00485) (.00240) (.00391)

Project Type Fixed Effecs Yes Yes Yes Yes Yes Yes

Year Fixed Effecs Yes Yes Yes Yes Yes Yes

Obs 1296 1296 1296 1296 1296 1296

Reduced form factor model is estimated for varying values of γ. Bootstrapped standard errors in parentheses.
Price per reviewer’s evaluation ϕria is normalized by engineer’s cost estimate to control for project size hetero-
geneity. Engineer’s cost estimate is an estimate of winning price predicted by an FDOT engineer prior to an
auction. Project type is assigned to each project based on project description on bid tabs. Every project is
classified and assigned one of road, bridge, building, mixed project, and other dummies.

Figure 4: Distribution of Efficiency Private Information
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6 Does evaluation uncertainty matter?

As shown in Section 3, an increase in evaluation uncertainty leads to an increase in the expected

price of design quality, and a greater dispersion in both price and design quality. The above

behavioral effects coupled with misallocations of project awards due to subjective evaluations

may have significant adverse effects on the auctioneer.

This section quantifies the impact of evaluation uncertainty through a change in the num-

ber of reviewers. More specifically, I examine to what extent evaluation uncertainty can be

mitigated by adding more reviewers to the evaluation process. As demonstrated in the follow-

ing, the marginal effect of additional reviewers dissipates quickly since evaluation uncertainty is

convex in the number of reviewers. Moreover, allocating a large number of reviewers to a review

task may come with a large opportunity cost to the FDOT, which is not captured in the model.

This counter factual exercise may also suffer from potential multiplicity of equilibria since the

model does not guarantee uniqueness of equilibria. Therefore, a change in a parameter of the

model could lead to a shift in equilibrium.

To shut down the effect of evaluation uncertainty on bidders’ behavior without additional

reviewers, I propose a simple auction mechanism, defined as PQR auction. The alternative

auction format keeps the setting of a DB auction except that every bidder submits a price per

unit of design score rather than a price for an entire project. As the allocation of a project is

not affected by the subjective evaluations of reviewers, it restores the efficient allocation of a

project: the most efficient bidder among the set of bidders always wins. Moreover, its unique

equilibrium bidding strategy corresponds to the equilibrium bidding strategy of a DB auction

with no evaluation uncertainty. Thus, a switch from the DB auction rule to the PQR auction

rule necessarily lowers the expected price of design quality, and also reduces the dispersion in

price and design quality.

6.1 Simulation of DB auction with varying number of reviewers

Consider a symmetric average DB auction with three bidders and a varying number of reviewers

R. The degree of evaluation uncertainty is τ̂(R), which is a decreasing and convex function of

R. The simulation results are shown in Table 7.
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Table 7: Distributions of Auction Outcomes at Various Number of Reviewers

Mean Standard Deviation
γ = 4 Winning Price Winning Quality Winning Price Winning Quality

R = 1 20.3 84.0 2.52 6.33
R = 2 19.7 83.5 2.37 6.27
R = 3 19.5 83.3 2.32 6.25

Each row corresponds to a hypothetical number of reviewers, which alters the degree of eval-
uation uncertainty. The mean and standard deviation of winning price and design quality
are computed through model simulation with the estimates obtained in the previous section.
The counterfactual exercise is conducted using an average project in the sample. Winning
prices are expressed in $1,000,000 while winning quality scores are out of 100 points.

Adding a reviewer to a DB auction with a reviewer would reduce the winning price by

1.3%, and the winning design quality by 0.25% on average. The effects of additional reviewers

on the dispersion of auction outcomes are somewhat larger than those on its expected value.

The standard deviations of the winning price and design quality decline by 2.66% and 0.41%,

respectively.

While an increased number of reviewers mitigates evaluation uncertainty, the marginal effect

of an additional reviewer declines quickly due to the convexity of evaluation uncertainty in the

number of reviewers. In addition, assigning many employees of the FDOT to the review task

can be prohibitively costly. To mitigate evaluation uncertainty without incurring additional

administrative cost of appointing reviewers, I propose an alternative auction mechanism that

shuts down the incentive as well as allocational effects of evaluation uncertainty on auction

outcomes.

6.2 PQR auction with design score contingent transfer

Under this alternative auction format, bidders submit a price of design quality (PQR) and a

design proposal. More specifically, I consider an auction in which the winner is selected based

solely on the lowest announced PQR, and the contractor receives the product of its own PQR

bid and design quality score. All other procedures remain exactly the same as in a DB auction.

This auction mechanism is of interest as it shuts down the effect of evaluation uncertainty on

bidding strategies without reducing the amount of evaluation uncertainty. Neither a bidder’s

chance of winning nor its ex-post payoff is affected by uncertain design evaluations of its rivals,

and thus bidders do not respond to the uncertainty in rivals’ design evaluations.28

28 Bidders would also be non-responsive to uncertainty in its own design evaluations under risk neutrality.

30



Bidders simultaneously choose both a PQR, bi, and a design quality, qi. The winner is

selected by the lowest bi. Design quality score is determined by the average across reviewers’

evaluations, qiwi. Non-winning bidders receive a zero transfer. Let Ew[.] denote the expectation

operator over the distribution of wi. Also, denote the probability of winning function conditional

on bidder i’s own price bid and rivals’ PQR strategies, ψ−i, by Pr(bidder iwins|bi,ψ−i). Note

that the probability of winning function is independent of the distribution of evaluation noise

Fw. Then, the interim expected payoff of bidder i is defined as:

πinti = max
bi,qi

Ew[Pr(bidder iwins|bi,ψ−i)(biqiwi − vciC(qi)− fci)].

Unbiased evaluation noise with risk neutrality assumption gives:

πinti = max
bi,qi

Pr(bidder iwins|bi,ψ−i)(biqi − vciC(qi)− fci).

Therefore, the model is identical to that of a DB auction without evaluation noise where

pi = biqi. The first-order condition with respect to qi gives:

bi = vciCq(qi), (17)

which is exactly the same condition as the ratio of first-order conditions for the case of a

DB auction. Therefore, bidder i’s problem can again be reduced to a one-dimensional choice

problem, and its PQR strategy is again a function of single-index ei, since:

πinti = max
bi

Pr(bidder iwins|bi,ψ−i)(biqi(bi)− vciC(qi(bi))− fci)

= max
bi

Pr(bidder iwins|bi,ψ−i) (u(bi)− ei).

It follows that, for a symmetric game, a unique symmetric equilibrium exists where the mono-

tone PQR strategy ψ(ei) is strictly increasing and differentiable in ei, such that:

ψ(ei) = u−1

(
ei +

´ ē
ei

(1− Fe(x))N−1dx

(1− Fe(ei))N−1

)
, (18)
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and corresponding pricing strategy p(ei, vci), and design strategy q(ei, vci) are determined by:

q(ei, vci) = C−1
q

(
ψ(ei)

vci

)
p(ei, vci) = ψ(ei) q(ei, vci).

Proposition 7. There exists a unique symmetric Bayesian Nash equilibrium of PQR auction

in which PQR strategy, ψ(ei), is strictly increasing and differentiable.

Proof in Appendix. I simulate and obtain the distribution of winning price and design quality

in this alternative auction. Table 8 compares auction outcomes from DB and PQR auction.

Table 8: Comparison of DB and PQR auction outcomes with varying values of γ

Mean Standard Deviation
γ = 4 Winning Price Winning Quality Winning Price Winning Quality

DB auction 20.3 84.0 2.52 6.33
PQR auction 19.0 82.7 2.24 6.23

Percentage difference 6.76% 1.58% 11.5% 1.50%

Mean Standard Deviation
γ = 8 Winning Price Winning Quality Winning Price Winning Quality

DB auction 20.1 84.1 1.92 4.47
PQR auction 19.0 83.6 1.67 4.46

Percentage difference 5.67% 0.59% 13.8% 0.23%

Mean Standard Deviation
γ = 12 Winning Price Winning Quality Winning Price Winning Quality

DB auction 20.1 83.5 2.04 4.31
PQR auction 19.0 83.4 1.83 4.31

Percentage difference 5.45% 0.45% 10.6% 0.13%

The mean and standard deviation of winning price and design quality are computed for DB and PQR auction
through model simulation with the estimates obtained in the previous section.The counterfactual exercise is
conducted using the average road project in the sample. R = 1 and N = 3. Winning prices are expressed in
$1,000,000 while winning quality scores are out of 100 points.

The PQR auction restores the DB auction outcomes with no evaluation uncertainty. Upon

a switch from the DB auction rule to the PQR auction rule, the expected winning price and
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design quality decline by 6.76% and 1.58%, respectively. The standard deviation of winning

price and design quality decline by 11.5% and 1.50%, respectively.

The above analysis has several economic implications. To avoid the adverse effects of a

subjective client’s evaluation on contracting outcomes, the client may want to adopt an objective

winner selection rule. In many cases, this criteria is some function of a price. An interesting

finding of the paper is that not all of the design criteria need to be objectively measurable, and

no uncertainty equilibrium can be implemented without reducing uncertainty itself.

It is important to note, however, that the result obtained in this counterfactual experiment

exploits the risk neutrality assumption. If bidders are risk averse, the proposed PQR auction

is not equivalent to a DB auction with no evaluation uncertainty. Moreover, the alternative

auction format may induce reviewers to lower design scores if the reviewers wish to reduce the

procurement cost. Even without such reviewers’ incentive to lower the cost, the auctioneer

needs to be careful in netting out unobserved reviewer heterogeneity since bidders could lose

profit from simply facing stringent reviewers in the alternative auction.

7 Conclusion

This paper studies the effects of uncertain design evaluations on competing suppliers’ behavior

using a sample of Design-Build auctions from the Florida Department of Transportation. I

document the presence of evaluation uncertainty, which affects the rankings of bidders through

introducing luck into the winner selection process. A structural model that incorporates un-

certainty in both design evaluations and rivals’ bids is developed and estimated, taking into

account potentially confounding heterogeneities, such as unobserved auction heterogeneity and

unobserved reviewer heterogeneity. The structural approach is consistent with the observed

fact that both the number of bidders and reviewers have no effect on bidders’ behavior on the

surface. The paper also provides the first attempt in the literature on multi-attribute auc-

tions to estimate structural parameters when some attributes of a bid are unobserved by the

econometrician. The economic significance of evaluation uncertainty is demonstrated through

simulation exercises. An increase in evaluation uncertainty not only generates a higher winning

price per unit of design quality on average, but also exacerbates dispersion in auction outcomes,

resulting in greater uncertainty in auction outcomes from the auctioneer’s standpoint. A simple

adjustment in the auction rule may completely shut down the impact of uncertain evaluations on

bidding strategy. Further, the adjustment in the auction rule precludes an inefficient allocation

of a project by selecting the most efficient bidder.
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8 Appendix (for online publication)

8.1 Definition of observables

• Engineer’s estimate of project cost: A proxy for the project size.

• Distance: Distance between project site and the closest branch of bidder.

• Utilization Rate: A bidder’s backlog per capacity. Backlog is defined as the total dollar

value of projects ongoing at the time of bidding. Capacity of a bidder is defined as the

maximum backlog during the period the sample is taken from. Backlog and capacity are

calculated using all other types of auctions and DB auctions procured by the FDOT from

1999 to 2012.

• Project Type: Projects are classified into road, bridge, building, mixed project, monitor-

ing system implementation, and others

8.2 Proof of Proposition 1

Proof. Let {pi(α), qi(α)} be the solutions to this constrained optimization problem of a bidder

i, such that:

{pi(α), qi(α)} = arg max
pi,qi

πinti subject to pi = α qi

⇔ {α qi(α), qi(α)} = arg max
qi

Gi(α,ψ−i) (αqi − vciC(qi)− fci)

⇔ {α qi(α), qi(α)} = arg max
qi

αqi − vciC(qi)− fci. (19)

The first-order necessary condition w.r.t. qi gives:

α− vciCq(qi) = 0

⇒ qi(α) = C−1
q (α/vci)

⇒ pi(α) = αC−1
q (α/vci).

It is clear that the second-order condition for maximum is satisfied. Therefore, the pricing and

design strategies above indeed is the optimal strategies given pi/qi = α.
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8.3 Proof of Proposition 2: Multiplicative separability of partially

reduced payoff function

I show that pi(bi)−vciC(qi(bi))−fci is mutiplicatively separable in vci and ei ≡ fci/C
−1
q (1/vci)

given Assumption 1.

Proof. From Proposition 1, it follows that:

pi(bi)− vciC(qi(bi))− fci = biC
−1
q (bi/vci)− vciC(C−1

q (bi/vci))− fci.

Now, Assumption 1 implies that C−1
q (.) is homogeneous of degree 1/(γ − 1). Therefore, it

follows that:

biC
−1
q (bi/vci)− vciC(C−1

q (bi/vci))− fci = vc
− 1
γ−1

i (biC
−1
q (bi)− C(C−1

q (bi))− e)

= C−1
q (1/vci) (u(bi)− ei),

where u(bi) ≡ biC
−1
q (bi) − C(C−1

q (bi)), and ei = fci vc
1

γ−1

i ≡ fci/C
−1
q (1/vci). Therefore, the

ex-post winning payoff is multiplicatively separable into a function of vci and a function of

ei.

8.4 Proof of Proposition 3: Equilibrium existence, monotonicity,

and continuity

I first show monotonicity of equilibrium PQR strategy in ei assuming that an equilibrium exists.

Suppose, contrary to the claim, that there exists a non-monotone equilibrium, such that there

exist some ψ1(e1) ≡ ψ1 > ψ2 ≡ ψ2(e2) with e1 < e2. Since bidder i has no better alternative

than ψi in equilibrium, we have:

Gi(ψ1,ψ−i)(u(ψ1)− e1) ≥ Gi(ψ2,ψ−i)(u(ψ2)− e1)

Gi(ψ2,ψ−i)(u(ψ2)− e2) ≥ Gi(ψ1,ψ−i)(u(ψ1)− e2),
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which implies:

Gi(ψ1,ψ−i)(u(ψ1)− e1)−Gi(ψ2,ψ−i)(u(ψ2)− e1)

≥ Gi(ψ1,ψ−i)(u(ψ1)− e2)−Gi(ψ2,ψ−i)(u(ψ2)− e2)

⇒ (Gi(ψ2,ψ−i)−Gi(ψ1,ψ−i))e1 ≥ (Gi(ψ2,ψ−i)−Gi(ψ1,ψ−i))e2

⇒ e1 ≥ e2 ∵ Gi(ψ2,ψ−i) > Gi(ψ1,ψ−i),

which is a contradiction. Therefore, PQR strategy is non-decreasing in ei for any equilibrium

if exists.

Now, I prove existence. Multiplicative separability of the partially reduced form payoff

fuction implies that the equilibrium PQR strategy of a bidder is independent of vci because:

max
bi∈[0,B]

πinti = max
bi∈[0,B]

Gi(bi,ψ−i) (u(bi)− ei)

= max
bi∈[0,B]

ln(Gi(bi,ψ−i)) + ln(u(bi)− ei).

To show the existence of monotone equilibrium, I show log-supermodularity between own bids

bi and private information ei. Then, I apply existence theorem proposed in Athey (2001), such

that:

ψi(ei) ≡ arg max
bi∈[0,B]

Gi(bi,ψ−i) (pi(bi)− vciC(qi(bi))− fci)

= arg max
bi∈[0,B]

C−1
q (1/vci)Gi(bi,ψ−i) (u(bi)− ei)

= arg max
bi∈[0,B]

Gi(bi,ψ−i) (u(bi)− ei) ∀ i ∈ N .

∂2ln(πinti )

∂bi∂ei
=

∂2ln(u(bi)− ei)
∂bi∂ei

=
ub(bi)

(u(bi)− ei)2

> 0,

which completes the proof of equilibrium existence.

If ψi is not continuous, then there exists e∗ with

lim sup e<e∗ψi(e) < lim inf e>e∗ψi(e).
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By Assumption 2, Gi(., .) is continuous in the first argument. Thus, discontinuity in ψi(.)

implies discontinuity in the probability of winning function Gi(., .), such that:

lim sup e<e∗Gi(ψi(e),ψ−i) > lim inf e>e∗Gi(ψi(e),ψ−i).

Now, bidder i’s expected payoff must be continuous around e∗in equilibrium, and therefore

lim sup Gi(ψi(e)− δ,ψ−i) must be very close to lim inf Gi(ψi(e) + δ,ψ−i) for arbitrarily small

δ > 0. However, this is impossible since lim sup Gi(ψi(e),ψ−i) is strictly greater than lim inf Gi(ψi(e),ψ−i),

and so no bidder would bid lim inf ψi(e)+δ. Thus, ψi(.) is continuous.

8.5 Proof of Proposition 4:

Proof. Consider equation (4). By implicitly differentiating with respect to τ , I have:

dψi(ei)

d τ
=

d qψi (ci)

d τ
Cqq(q

ψ
i (ci)) vci, (20)

which implies that
d qψi (ci)

d τ
and dψi(ei)

d τ
have the same sign. Also,

d pψi (ci)

d τ
=

dψi(ei)

d τ
qψi (ci) +

d qψi (ci)

d τ
ψi(ci). (21)

Therefore,

sign

(
dψi(ei)

d τ

)
= sign

(
d pψi (ci)

d τ

)
= sign

(
d qψi (ci)

d τ

)
, (22)

which completes the proof.

The rest of this section is organized as follows. First, I consider a model with neither auction

nor reviewer heterogeneities. I show that normalizing the quality cost function C(.) is required

even in this simplest case. Next, both observed and unobserved auction heterogeneities are

introduced to the simple model, and I derive its implications on the equilibrium strategies

of bidders. Finally, unobserved reviewer heterogeneity and evaluation noise is introduced. It

is shown that the distributions of unobserved auction, bidder, and reviewer heterogeneities

together with evaluation uncertainty are all semiparametrically identified under a normalized

quality cost function.
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8.6 Non-identification of quality cost function

To demonstrate the identification problem, I start with the simplest case in which there is

neither auction nor reviewer heterogeneity. That is, I consider the identification problem under

identical auctions with perfectly observed design quality. Suppose that the econometrician

observes a random sample of A auctions, indexed by a , with the following information for each

auction: price and design quality, {pia, qia : i = 1, 2, .., Na} , where i is the bidder subindex,

and Na is the number of bidders in auction a.

Given that design quality is observable, the econometrician observes the joint distribution

of price and design quality, Fp,q. Thus, the question is whether or not the econometrician is able

to recover the functions of the primitives C(.), Fe,vc from the observed distribution of bids Fp,q.

It turns out that C(.), Fe,vc cannot be separately identified from the observed bids. To see this,

consider the boundary condition where the most inefficient type, ē ≡ f̄ c/C−1
q (1/v̄c), makes zero

ex-post payoff with no chance of winning.If the most inefficient type makes a positive ex-post

payoff in a continuous monotone equiilibrium, then there is always a small deviation in a PQR

bid that gives the bidder a positive chance of winning with a positive ex-post payoff, violating

the equilibrium condition. Let {b̄, p̄, q̄} denote the PQR, price, and design quality submitted

by type \bar{e} . Since Gi(b̄,ψ−i) = 0 , the first order conditions for the boundary type are

given by:

b̄ = v̄c Cq(q̄)

p̄− v̄c C(q̄)− f̄ c = 0.

It is clear from the above conditions that two equations cannot pin down four unknowns,

{v̄c, f̄ c, Cq(q̄), C(q̄)}. Even if a parameteric assumption on C(.) is imposed where C(.) can be

identified from Cq(.) , the identification fails.

8.7 Proof of Proposition 5: Multiplicative separability of bidding

strategies

Let b(θa, eia) be the equilibrium PQR strategy of bidder i in an auction a with unobserved

heterogeneity θa with efficiency private information eia. Similarly, define sia ≡ b(0, eia), such

that sia is the strategy of bidder i when θa = 0. I show that there is a function of θa, say h(θa),

that satisfy b(θa, eia) = hs(θa) sia. Then, I show that the two first order optimality conditions

are satisfied under the conjectured equilibrium strategy profile. For the sake of simplicity, I
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omit observed heterogeneity in the following proof, but the proof for observed heterogeneity

follows exactly the same steps as the proof for unobserved heterogeneity shown below.

Proof. The probability of winning function Gi(.) is homogeneous of degree 0, and so I have

Gi(h(θa) sia, h(θa)ψ−i) = Gi(sia,ψ−i). Further, its density function g(.) is homogeneous of de-

gree -1 since Gi(.) is homogeneous of degree 0, implying that g(h(θa) sia) = sia/h(θa). Therefore,

the left hand side of (14) can be factored as follows.

κ(γ)

(
(h(θa) sia)

γ̃ + γ̃ (h(θa) sia)
γ̃−1Gi(h(θa) sia, h(θa)ψ−i)

gi(h(θa) sia, h(θa)ψ−i)

)
= κ(γ)h(θa)

γ̃

(
sia

γ̃ + γ̃ sia
γ̃−1Gi(sia,ψ−i)

gi(sia,ψ−i)

)
.

Therefore, h(θa) = exp{γ−1
γ
ρ θa} does not affect the first order condition (14) in any way.

Now, consider pricing strategy. It is immediate that pricing strategy is log-linear in θa, such

that:

ṗ(Za, θa, ε
e
ia, ε

v
ia) = γ̃ (

1

γ̃
ρ θa + ṡia) + (1− ρ) θa + εvia − (γ̃ − 1) γ̇

= θa + γ̃ ṡia + εvia − (γ̃ − 1) γ̇,

which completes the proof.

8.8 Proof of Proposition 7: Equilibrium uniqueness in PQR auction

Proof. By Proposition 3, equilibrium exists and equilibrium PQR strategy, ψi(ei), is non-

decreasing and continuous. Here, I show that the equilibrium bidding strategy ψi(ei) is strictly

increasing and differentiable. Lastly, I prove the uniqueness of the equilibrium bidding strategy.

Suppose that ψi(e) = ψ′i on the interval [e(1), e(2)]. Given that equilibrium bidding strategy

is non-decreasing, it is obvious that ψi(e) < ψ′i for e < e(1), and ψi(e) > ψ′i for e > e(2). Then,

a bidder of type e(1) faces the probability of winning P , which can be expressed as:

P =
N−1∑
k=0

1

k

(
N − 1

k

)
(Fe(e

(2))− Fe(e(1)))k(1− F (e(1)))N−1−k.

where N is the number of bidders. Bidder i of type e(1) can, however, bid ψ′i− δ for arbitrarily

small δ > 0, and its probability of winning is at least (1−Fe(e(1)))N−1. Thus, a bidder i of type

e(1) faces a discrete increase in the probability of winning, which is at least (1−Fe(e(1)))N−1−P ,
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and so ψ′i cannot be an equilibrium bid for e(1).

Non existence of asymmetric equilibrium directly follows from Maskin and Riley (1982),

and therefore I impose symmetry on the bidding strategy (i.e., ψi(.) = ψ(.)). Given symmetric

strictly increasing bidding strategy, the probability of winning function, Gi(ψi(ei),ψ−i), can be

written as:

Gi(ψi(ei),ψ−i) = (1− Fe(ei))N−1

To avoid cluttering, I denote the probability of winning (1−Fe(ei))N−1 by G(ei) from this point

on. To see that the equilibrium bidding strategy ψ(ei) is differentiable, consider two distinct

types e(1) and e(2) with e(2) = e(1) + δ where δ > 0. Equilibrium conditions imply:

G(e(1)) (u(ψ(e(1)))− e(1)) ≥ G(e(2)) (u(ψ(e(2)))− e(1))

G(e(2)) (u(ψ(e(2)))− e(2)) ≥ G(e(1)) (u(ψ(e(1)))− e(2))

The above two inequality can be rewritten as:

(G(e(1))−G(e(2))) (u(ψ(e(1)))− e(1)) ≥ G(e(2)) (u(ψ(e(2)))− u(ψ(e(1))))

(G(e(2))−G(e(1))) (u(ψ(e(2)))− e(2)) ≥ G(e(1)) (u(ψ(e(1)))− u(ψ(e(2))))

By the mean value theorem, there exist ψ∗ ∈ (ψ(e(1)), ψ(e(2))) and ψ∗∗ ∈ (ψ(e(1)), ψ(e(2))), such

that:

(G(e(1))−G(e(2))) (u(ψ(e(1)))− e(1)) ≥ G(e(2)) (ψ(e(2))− ψ(e(1)))ψ∗

(G(e(2))−G(e(1))) (u(ψ(e(2)))− e(2)) ≥ G(e(1)) (ψ(e(1))− ψ(e(2)))ψ∗∗

Rearranging the above two inquality, I have:

(G(e(1))−G(e(2))) (u(ψ(e(1)))− e(1))

G(e(2))ψ∗
≥ ψ(e(2))− ψ(e(1)) ≥ (G(e(1))−G(e(2))) (u(ψ(e(2)))− e(2))

G(e(1))ψ∗∗

Dividing through by δ, and let δ → 0 gives:

−G′(e(1)) (u(ψ(e(1)))− e(1))

G(e(1))ψ(e(1))
≥ limδ→0

ψ(e(1)+δ)−ψ(e(1))
δ

≥ −G
′(e(1)) (u(ψ(e(1)))− e(1))

G(e(1))ψ(e(1))

where G′(e(1)) ≡ ∂G(ei)/∂ei at ei = e(1). Since the above inequality holds for any ei, ψ(ei) is
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differentiable and given by:

dψ(ei)

d ei
=
−G′(ei) (u(ψ(ei))− ei)

G(ei)ψ(ei)
(23)

Now, I turn to prove equilibrium uniqueness. It suffices to show that the initial value

for the differential equation (23) is unique since the bidding strategy for the other types are

uniquely determined by (23). Conjecture that the most inefficient type ē with Fe(ē) = 1 bids

ψ(ē) = u−1(ē). As a bidder of type ē makes zero profit when bidding u−1(ē), bidding below

u−1(ē) would yields negative payoff, and so any bid lower that u−1(ē) is certainly not equilibrium

bidding strategy for type ē. Now, consider a case in which type ē bids above u−1(ē). Then, there

exists a sufficiently small δ > 0, such that ψ = u−1(ē) + δ, which makes the most inefficient

type earn a positive expected profit since the equilibrium strategy ψ() is continuous. This is a

contradiction, however, because the most inefficient type cannot win with a positive probabiltiy

when equilibrium bidding strategy ψ(ei) is strictly increasing in ei. Therefore, ψ(ē) = u−1(ē)

is the unique initial value for the differential equation of (23), which completes the proof of

uniqueness.

To see that the unique equilibrium bidding strategy takes the expression given in (18),

consider first the expected payoff of bidder i in the unique equilibrium.

πinti = G(ei)(u(ψ(ei))− ei) (24)

By the envelope theorem, I have:

d πinti

d ei
= −G(ei)

Integrating back with respect to ei gives:

πinti =

ˆ ē

ei

G(x) dx (25)

Solving for ψ(ei) using equations (24) and (25), I obtain:

ψ(ei) = u−1

(´ ē
ei
G(x) dx

G(ei)

)

= u−1

(´ ē
ei

(1− Fe(x))N−1 dx

(1− Fe(ei))N−1

)
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which is the desired expression.

8.9 Equilibrium computation algorithm

Step 1: Set the level of evaluation uncertainty arbitrarily large. Denote the pseudo evaluation

uncertainty by τ j where τ 0 is the initial level of pseudo evaluation uncertainty. Then, I draw

300 types from eia ∼ F̂e(.|N,R).

Step 2: Guess a strategy of each bidder and denote them by ψj,ki (ei) for k = 0. Given the

strategy of bidders, compute the equilibrium strategy by applying the following Quasi-Newton

map to every bidder of every type simultaneously (Here I suppress the dependency of strategy

on ci for the sake of visual clarity).

ψj,k+1
i = ψj,ki −Hj,k J j,k, (26)

where J j,k and Bj,k are the Jacobian and inverse Hessian of πinti . Since inversion of Hessian

matrix is computationally very expensive, I approximate Hj,k (say Ĥj,k ) by BFSG method,

such that:

Ĥj,k+1 =

(
I − (J j,k+1 − J j,k)(ψj,k+1

i − ψj,ki )T

(J j,k+1 − J j,k)T (ψj,k+1
i − ψj,ki )

)T

Ĥj,k

(
I − (J j,k+1 − J j,k)(ψj,k+1

i − ψj,ki )T

(J j,k+1 − J j,k)T (ψj,k+1
i − ψj,ki )

)

+
(ψj,k+1

i − ψj,ki )(ψj,k+1
i − ψj,ki )T

(J j,k+1 − J j,k)T (ψj,k+1
i − ψj,ki )

.

A necessary condition for a Bayesian Nash Equilibrium is ψj,l+1
i = ψj,li for all l > K where K

is some arbitrarily large integer.

Step 3: Upon convergence, I reduce evaluation uncertainty by κ > 0, such that τ j+1 = τ j−κ.

Then, use equilibrium strategy ψj,ki as an initial guess for ψj+1,k
i .

Step 4: Repeat step 2 and 3 till τ j = τ̂ , such that pseudo evaluation uncertainty meets

estimated evaluation uncertainty in the data.
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