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Abstract

Comprehensive global decarbonization requires transportation services cease to

rely on fossil fuels for power generation. This paper develops a generic, time-

driven life-cycle cost model for mobility services to address two closely related

questions central to the emergence of clean energy transportation services: (i)

the utilization rates (hours of operation) that determine how alternative driv-

etrains can be ranked in terms of their cost, and (ii) the cost-efficient share of

clean energy drivetrains in a vehicle fleet composed of competing drivetrains.

The model ranks alternative drivetrains with different environmental and eco-

nomic characteristics in terms of their life-cycle cost for any given duty cycle.

The critical utilization rate that equates any two drivetrains in terms of their

life-cycle cost is shown to also provide the optimization criterion for the effi-

cient mix of vehicles in a fleet. This model framework is then calibrated in

the context of urban transit buses, on the basis of actual cost- and operational

data for an entire bus fleet. In particular, our analysis highlights how the eco-
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nomic comparison between diesel and battery-electric transit buses depends on

the specifics of the duty cycle (route) to be served. While electric buses entail

substantially higher upfront acquisition costs, the results show that they obtain

lower life-cycle costs once utilization rates exceed only 20% of the annual hours,

even for less favorable duty cycles. At the same time, the current economics of

the service profile examined in our study still calls for the overall fleet to have

a one-third share of diesel drivetrains.

Keywords: Decarbonization, clean energy vehicles, transportation services,

life-cycle cost, fleet optimization

1. Introduction

With the transition towards renewable power gaining momentum, the global

quest for energy decarbonization is increasingly focused on the transportation

sector [1, 2]. The impending climate crisis [3, 4], in combination with con-

cerns about local air pollution [5], provide a growing impetus to replace internal

combustion engines with zero-emission drivetrains [6]. Yet, the economics of

clean energy drivetrains, potentially powered by batteries [7, 8], hydrogen [9] or

biofuels [10], remains a topic of intense debate for both passenger- and cargo

transportation services [11].

The central question addressed in this paper is how a fleet operator should

combine alternative drivetrains with different environmental and economic char-

acteristics so as to meet a given transportation service profile in a cost-efficient

manner. This question has parallels to the task of combining alternative power

generation technologies [12], such as renewable power plants and those based on

fossil fuels, in cost efficient manner so as to meet a given electricity load profile

[13, 14].

One major contribution of this paper is a model framework for identifying

cost-efficient vehicle fleets through the development of a cost metric called the

Levelized Cost per X-mile (LCXM). Applicable to any kind of transportation
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service (passenger and cargo), the LCXM reflects the unit cost of a transporta-

tion service, such as a ton- or passenger-mile delivered. Our unit cost concept

of the LCXM is related to the Total Cost of Ownership (TCO), a life-cycle cost

metric that has been widely used in transportation studies [15, 16] and captures

the total discounted cost of acquiring, operating, and selling a vehicle [17, 18].

The TCO has been employed in the literature to compare the overall cost of

alternative drivetrains at the vehicle level [19, 20], and in connection with fleets

[21, 22, 23].

The LCXM metric extends TCO in the direction of the Levelized Cost of

Electricity (LCOE), a unit cost measure commonly used in the energy litera-

ture. Our model is predicated on the notion that operating costs are driven by

the hours of vehicle operation. This conceptualization of the life cycle cost of

transportation services is in the tradition of time-driven activity based costing

systems, a construct that has proven useful in multiple industries, including en-

ergy systems and health care [24]. This time-based approach allows a planner to

capture not only distance traveled but also other duty cycle characteristics like

vehicle speed and stop frequency, all of which have differential cost implications

[25, 26].

The LCXM metric is shown to yield the cut-off points in terms of annual op-

erating hours that make one drivetrain more economical than another. The cut-

off points, in turn, provide the decision criterion for choosing the cost-efficient

shares of alternative drivetrains in a fleet that is to meet a given demand sched-

ule or load profile. Thus, the LCXM concept provides a unified framework for

examining the (i) cost competitiveness of individual vehicles, (ii) optimal mix

of alternative drivetrains in a fleet, (iii) efficient dispatch of alternative driv-

etrains, and (iv) effect of the characteristics of multi-dimensional duty cycles

on the composition of cost-efficient vehicle fleets. Finally, as a life-cycle cost

measure, the LCXM also accounts for any environmental externalities that are

being measured with a economic cost figure.

The second major contribution of this study is to apply the LCXM model

framework in the current economic context of an urban bus service provider in
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California as a case in point. Urban transit bus fleets have received consider-

able attention in the transportation literature as well as in the urban planning

and policy-making communities [8, 27, 28]. Relying on recent measurements

of cost and operational performance per bus in the provider’s fleet as well as

real-time protocols for bus dispatches to routes served, this study specifically

contrasts the life-cycle cost of battery-electric buses with that of diesel buses.

While the former entail a substantially higher acquisition cost, they result in a

lower life-cycle cost compared to diesel buses, provided the annual utilization

rate is at least around 1,300 hours, with the exact cut-off depending on the

characteristics of the particular route served. As a reference point, the average

annual utilization of transit buses in the U.S. amounts to 2,508 hours [29].

Given the hourly schedule for bus services provided in the context of our

application in California, the results show that the share of electric vehicles in a

cost-efficient bus fleet currently varies between one- and two thirds, depending

on the routes to be served. While ongoing trends favor increasing reliance on

electric buses within a fleet, conventional drivetrains remain part of a cost-

efficient fleet in the California environment for now. The empirical findings

provide a cost-based rationale for the transition from conventional diesel buses

to battery-electric vehicles in the context of urban transit buses [6, 30]. In

relation to earlier studies on the economics of clean energy vehicles [15, 16], the

results point to a more favorable competitive position of electric vehicles [19, 17].

Central to the presented analysis is that the efficient share in the overall fleet is

determined by the characteristics of the required service load profile.

The paper is structured as follows: Section 2 presents the LCXM model

framework, beginning with the life-cycle cost of transportation formulation at

a vehicle-level, followed by its extension to a cost-efficient fleet-level analysis.

Section 3 then applies these formulations to the California context and yields

empirical results. Section 4 discusses the results and presents sensitivity anal-

yses. The paper concludes in Section 5. The Appendix provides formal proofs

and details concerning the underlying data used in the empirical analysis.
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2. Economic Model

2.1. Life-Cycle Cost of Transportation Services

The central element of the model developed in this paper is a unit cost measure

that is a direct analogue of the familiar Levelized Cost of Electricity (LCOE).

This metric serves as the relevant benchmark for comparing the cost of alter-

native power generation sources, such as natural gas or solar PV. Expressed in

dollars per kilowatt hour (kWh), the LCOE is conceptualized as the average

unit revenue that an equity investor would require for all kilowatt hours pro-

duced to break-even on a particular investment [31]. This unit revenue must

cover all operating expenses, repay the project debt, and attain an appropriate

return for equity investors [32, 33].

For a generic transportation service that carries physical objects across loca-

tions, the measure of output will generally be ‘X-miles’ (or ‘X-kilometers’ with

straightforward conversion). In the context of cargo transports, this measure

frequently becomes ton-miles, i.e., if on average z tons of cargo are transported

for y miles, the vehicle delivers z ·y ton-miles. Similarly, in the context of passen-

ger travel, the corresponding measure could be passenger-miles. For passenger

cars, the appropriate measure may simply be miles if the primary purpose of

the service is to transport the driver of the vehicle.

Our model is predicated on the notion that operational costs incurred are

driven by the total time the vehicle is in operation. For a given T -year planning

horizon, we denote by ~h ≡ (h1, ..., hT ) the usage profile of a vehicle, where

0 ≤ hi ≤ 8, 760 is the utilization in hours of operation in year i (a list of symbols

and acronyms is provided in the Appendix ). The number of miles traveled in

year i is then given by the average velocity in miles/hour, a(θ), multiplied

with hi. Velocity depends on the characteristics of the duty cycle, θ, a multi-

dimensional parameter that captures the relevant performance requirements in

a specific transportation context. For transit buses, for instance, the duty cycle

reflects the specifics of the route, including the number of bus stops per mile,

the ambient temperature, and the topography of the route.
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The number of passengers or tons of cargo transported in any given year is

also determined by the utilization in that year. Allowing for the possibility of

a non-linear relation, we let the function bi(hi|θ) represent the average number

of passengers or tons transported if the vehicle travels a(θ) · hi miles in year i.

The total number of X-miles then becomes:

Xi(hi|θ) = bi(hi|θ) · a(θ) · hi.

Turning to cost components, let v denote the initial acquisition expenditure

for the vehicle. At the end of its useful life, the vehicle may yield a salvage

value λ · v, with 0 < λ < 1. In terms of annual operating costs, we distinguish

between variable and fixed costs in year i. The variable component, wi(hi|θ),

varies with the hours of operation in year i. Fixed costs, Fi(θ), are by definition

usage-independent. Applicable examples for variable operating costs include

fuel, spare parts, and the prorated salary for the driver. In contrast, insurance,

registration, and certain maintenance activities are fixed costs. In the specific

case of an electric vehicle, the cost of the battery warranty, where the potential

replacement cost of the battery during the useful life of the vehicle is ‘smoothed’

through periodic warranty payments, would be considered a fixed cost.

Aggregation of the different cost components into a single unit cost number

requires a ‘levelization’ factor given by the discounted number of X-miles that

the vehicle travels over its useful life. Let r denote the applicable cost of capital

that investors require for a project, with γ = 1
1+r denoting the corresponding

discount factor. Then the levelization factor in terms of discounted future X-

miles is defined as:

Y (~h|θ) =

T∑
i=1

Xi(hi|θ) · γi.

A final cost category stems from corporate income taxes and a depreciation

tax shield that a firm or individual may be subject to. As shown in the Appendix,

this cost category can be summarized, including the potential salvage value, in

a factor ∆ that adjusts the acquisition cost of the vehicle. Overall, the levelized
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cost per X-mile is then defined as the sum of three components:

LCXM(~h|θ) = w(~h|θ) + f(~h|θ) + c(~h|θ) ·∆, (1)

where:

c(~h|θ) ≡ v

Y (~h|θ)
, w(~h|θ) ≡

T∑
i=1

wi(hi|θ) · γi

Y (~h|θ)
, f(~h|θ) ≡

T∑
i=1

Fi · γi

Y (~h|θ)
. (2)

The Appendix formally establishes that the LCXM metric, as defined in (1),

does satisfy the break-even criterion that investment in a vehicle has zero net-

present value if the average revenue per X-mile delivered is exactly equal to the

LCXM.

Claim 1. For a given duty cycle θ and usage profile ~h, the LCXM(~h|θ) in (1)

is the break-even price per X-mile.

The LCXM metric yields an immediate cut-off frontier in terms of utilization

that makes one drivetrain preferable to another in terms of life-cycle cost. For

simplicity, suppose that the variable cost, wi(·), per hour of operation is constant

such that w2 > w1. If drivetrain 1 involves a higher acquisition cost than

drivetrain 2, the former is referred to as ‘baseload’ and the latter (drivetrain

2) as the ‘peaker’. If in each year i the utilization rate hi exceeds the cut-

off utilization rate h∗, the baseload drivetrain will be more cost effective. The

critical h∗ is given as the unique value that equates the two levelized cost curves,

that is:

LCXM1(h∗, ..., h∗|θ) = LCXM2(h∗, ..., h∗|θ).

Conversely, the peaker drivetrain is preferable from a cost perspective for con-

sistently low utilization rates hi < h∗. Depending on the parameters in the

different cost categories, it is, of course, possible that h∗ exceeds the annual

limit of 8,760 hours in which case the peaker drivetrain entails lower life-cycle

cost irrespective of the actual utilization rates.
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2.2. Cost-Efficient Vehicle Fleets

Consider now a service provider that chooses a vehicle fleet composed of multiple

drivetrains. Initially, it is supposed that L(t) represents the load profile of

vehicles required to operate during the t-th hour of every day of the year, in

each of the next T years on the same duty cycle θ. Suppose the service provider

seeks to minimize the acquisition- and ongoing operating costs of two alternative

drivetrains. Let ku denote the number of vehicles of type u. It will be convenient

to first ignore the integer constraint on vehicles. Suppose that the maximum

value of L(t) on [0, 24] is k+, and that L(·) can be uniformly approximated

by a polynomial function on the interval [0, 24] (Weierstrass Theorem). Thus

k1 +k2 ≥ k+. Finally, let D(k) denote the total amount of time in [0, 24] during

which at least k vehicles must be in operation according to L(·). Formally,

D(k) ≡ ||{t ∈ [0, 24]|L(t) ≥ k}||, (3)

where ||·|| denotes the total length of the intervals for which L(t) ≥ k. Since L(·)

can be described by a polynomial, there are at most finitely many such intervals.

By construction, D(·) is continuous and decreasing in k. Furthermore, if L(·)

attains its maximum at a unique point in time, the function D(·) assumes all

values between zero and 24.

Claim 2. Consider two drivetrains whose levelized cost curves, LCXM1(·) and

LCXM2(·), intersect at (h∗, ..., h∗) with h∗ ∈ [0, 8760]. Given the daily load

profile L(t), the cost-minimizing number of baseload drivetrains, k∗1 , is given by:

365 ·D(k∗1) = h∗.

The intuition for this result (formally demonstrated in the Appendix ) is that

in order for the total cost associated with the fleet operation to be minimized,

the ‘marginal’ baseload vehicle (drivetrain 1) must operate for exactly h∗

365 hours

per day. Otherwise the total life-cycle cost could be lowered by either replacing

this last vehicle by a peaker or expanding the number of baseload vehicles.

Since k∗1 will generally not be an integer, the actual cost-minimizing number of

8



baseload drivetrains will be one of the two integers adjacent to the k∗1 identified

in the equation for h∗ . This reflects that the overall LCXM associated with the

load profile L(·) is a convex combination of the two individual LCXMs.

The preceding framework is readily extended to settings where each day has

its own distinct load profile Lj(·), with 1 ≤ j ≤ 365. To that end, suppose

that each Lj(·) satisfies the same technical conditions as L(·) above, and denote

by Dj(·) the analogue of the function D(·) in (3) corresponding to Lj(·) rather

than L(·) .

Claim 3. Under the conditions of Claim 2, if the daily load profiles are given

by Lj(·), the cost-minimizing number of baseload drivetrains, k∗1 , is given by:

365∑
j=1

Dj(k
∗
1) = h∗.

3. Application: Transit Bus Fleets

3.1. Life-Cycle Cost Comparisons

The preceding framework is now applied to the current economic environment

of an urban bus service provider as a case in point. Urban bus service providers

have been among the first fleet operators to replace diesel-powered vehicles with

battery-electric or even hydrogen-electric buses [6]. Stanford University in Cal-

ifornia initiated this transition a number of years ago. The university provided

detailed records of its bus service based on multiple information systems pertain-

ing to energy and fleet management, covering all relevant cost- and operational

data. The Appendix provides details of both the data and the collection process.

Like a municipal bus service, Stanford’s bus service known as Marguerite

interconnects the university campus and the surrounding community via multi-

ple routes. It operates daily at varying levels of capacity utilization with peaks

during weekday mornings and afternoons. The majority of the service is pro-

vided with transit buses (see the Appendix ). Beginning in 2014, the university

has begun to gradually replace diesel-powered with battery-electric buses.
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To compare the life-cycle cost of the two drivetrains for different duty cycles,

the calculations focus on two distinct routes, referred to as Route A and B. They

reflect opposite ends of the range of duty cycles operated by Marguerite, with

the number of bus stops per mile at 1.11 and 2.67 and the average velocity at

7.40 and 3.01 miles per hour for Route A and Route B, respectively. Since to-

pography and ambient temperature of all campus routes are virtually identical,

Routes A and B generally yield corner solutions for the set of routes operated by

Marguerite. While this set reflects common duty cycles for fairly flat topogra-

phies in a Mediterranean climate, we might expect regions with more diverse

route characteristics to exhibit a wider range of velocity figures.

Table 1: Main cost parameters (in 2019 $US).

Diesel Electric

Variable cost per hour (Route A) $26.25 $2.02

Variable cost per hour (Route B) $16.79 $4.77

Fixed cost per year $5,054 $5,913

Net acquisition cost $425,189 $631,300

Useful lifetime 12 years 12 years

Cost of capital 5.00% 5.00%

Table 1 shows average values for the main life-cycle cost components (details

provided in the Appendix ). The net acquisition cost represents the initial pur-

chasing price minus the salvage value and, for electric buses, a capital incentive

of $100,000 granted by the California Air Resources Board [34]. The variable

cost comprises fuel costs and variable maintenance costs but excludes the salary

of drivers, which is the same across drivetrains. Note that all cost, route and per-

formance measures associated with distance can readily be expressed in terms

of kilometers (meters) or miles by using the appropriate conversion factor (1

mile = 1.609 km).

Considering the variable costs in Table 1, one might expect that more stops

per mile (Route B) increases the variable cost of both drivetrains and especially
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that of diesel buses whose fuel consumption is more sensitive to frequent stops.

Yet, this intuition can be misleading. The increased fuel cost per mile of a diesel

bus on Route B is outweighed by the relatively low average velocity resulting in

a lower fuel cost per hour of operation. For electric buses, in contrast, the same

reasoning applies, yet fuel costs are only a small share of the overall variable cost

of operation. The larger component of variable maintenance costs, e.g., brake

replacement, is indeed higher on Route B with more stops per mile and therefore

the overall variable cost per hour for an electric bus on Route B exceeds that of

Route A.
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Figure 1: Levelized cost per passenger-mile. a,b, This figure shows the levelized cost

per passenger-mile of diesel and electric transit buses for (a) Route A and (b) Route B.

Figure 1 depicts the levelized cost curves per passenger-mile (LCPM) for

both drivetrains by route. Beyond the unique critical utilization value, h∗,

electric buses entail a lower life-cycle cost. These cut-off values amount to 996

hours for Route A and 2,006 hours for Route B, marked by the solid vertical

lines in Figure 1. The substantially lower cut-off value on Route A mainly

reflects that the ratio of the variable costs per hour for the two drivetrains is

relatively large on that route. The critical utilization value for the average duty

cycle (number of stops per mile) of the entire Marguerite system amounts to
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1,329 hours; see the Appendix for details.

The operational records of the Marguerite fleet show that Route A is al-

most exclusively served by electric buses, while the opposite holds for Route B.

The average annual utilization factors amount to 1,434 hours and 1,453 hours,

respectively. For these utilization factors, Figure 1 shows that the LCPM of

electric buses is lower than that of diesel buses on Route A, while the opposite

pattern applies on Route B. The reliance on these two drivetrains for the two

routes thus appears consistent with the goal of minimizing the life-cycle cost

of transportation services provided. For further reference, the average annual

utilization of transit buses in the U.S. amounts to 2,508 hours [29]. Such high

utilization rates would give electric buses a cost advantage on both routes, as

shown in Figure 1.

As discussed in the Introduction, the transportation literature has considered

alternative output measures for transportation services. In the context of urban

bus transport, miles would be a natural alternative to passenger miles. The

corresponding cost curves, denoted by LCM(·), for Routes A and B are shown

in Figure 2. Direct comparison with the cost curves in Figure 1 shows that when

the output measure is passenger-miles both types of drivetrains experience a

lower life-cycle cost on Route A in comparison to Route B. Yet, the opposite

directional change emerges for LCPM . This opposite effect reflects that there

are on average three times as many passengers on Route B compared to Route

A. At the same time, it should be noted that on both routes the LCM(·) curve

decreases more steeply than the LCPM(·) curve. This ranking reflects the

general property that, provided b(·|θ) > 1, |LCPM ′(h)| < |LCM ′(h)|, for all

values of h. At the same time, the critical utilization rate h∗ is invariant to the

particular measure of X-miles.

3.2. Cost-Efficient Vehicle Fleets

Turning next to fleet-level considerations, Figure 3 depicts the daily load profiles

of buses operating in the Marguerite fleet. If hypothetically all Marguerite buses

were to run on Route A, the efficient number of diesel and electric buses would
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Figure 2: Levelized cost per mile. a,b, This figure shows the levelized cost per mile of

diesel and electric transit buses for (a) Route A and (b) Route B.

amount to 7 and 22, respectively. The corresponding values for Route B are

18 and 11. Since the functions Dj(·) are decreasing in k1, the efficient number

of electric buses for Route B is smaller than on Route A, as the corresponding

critical utilization factor h∗ is larger for Route B (see Figure 1). Though the

proportion of the two competing drivetrains within the fleet differ significantly

for Routes A and B, diesel buses will be dispatched only within the ‘rush-hour’

periods corresponding to peak demand. The load profile depicted in Figure 3 is

an overlay of the hourly profile for individual days in 2019. The more the daily

profiles overlap, the darker is the shade of gray. The upper twin peaks represent

load profiles on weekdays, while the lower twin peaks display the profile for

weekend days.

If the number of stops per mile is taken to be the average of all routes

served by Marguerite and all buses were to serve that average route, the optimal

number of diesel and electric buses would be 11 and 18. For this scenario, electric

buses would be operating as baseload capacity for more than the respective h∗

hours per year, whereas each of the diesel buses would be operating as peakers for

less than that. An insight from our analytical framework is that it will generally
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Figure 3: Cost-efficient vehicle fleets. a,b, This figure shows the cost-efficient number of

diesel and electric transit buses for the hourly load profile of Marguerite in 2019 if hypotheti-

cally all routes exhibited a duty cycle of either (a) Route A and (b) Route B.

be efficient to have a mix of baseload and peaker vehicles, unless the underlying

load profile assumes an ‘extreme’ shape. Specifically, even if all serviced routes

were to correspond to the characteristics of Route B, which tends to favor diesel

buses, a planner would still want to procure 11 electric buses out of a total of

29. That share would, of course, be even larger if the load profile in Figure 3

was less ‘peaky’ and replaced by a more uniform service schedule.

The model of fleet optimization presented in this paper has ignored require-

ments for backup capacity due to the possibility of unscheduled vehicle main-

tenance or the occurrence of special events in the service area. In fact, the

Marguerite fleet currently includes 10 transit buses over and above the annual

peak demand of 29 scheduled buses. The average utilization rate for buses on

both routes is therefore even further below the U.S. average. At the same time,

given that the Marguerite fleet already included 29 electric buses in 2019, the

university will lower its total operating costs by reducing its reliance on diesel

buses to the largest extent possible.
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4. Discussion

The preceding numerical calibration of the life-cycle cost of transit buses relies

on the recent data records of a single service operator. It is therefore essential

to examine the sensitivity of the findings to changes in the key input variables

pertaining to other economic environments, changes in public policy, and general

economic trends.

The graphs in Figure 4 focus on the sensitivity of the critical utilization rate,

i.e., h∗

8760 , as derived in Figure 1 and the efficient share of electric buses, i.e.,
k∗
1

29 ,

as derived in Figure 3. The comparisons focus on the same two routes in order

to illustrate the impact of alternative duty cycles.

Electricity rates differ substantially across jurisdictions. Yet, the purple lines

in Figure 4 indicate that both dependent variables (h∗ and k∗1) are insensitive to

changes in the electricity cost of electric buses, as they constitute only a minor

share of the overall life-cycle cost of electric buses.

In contrast, the blue lines in Figure 4 show that the dependent variables

are sensitive to changes in the fuel cost of diesel buses. The cost of diesel fuel

varies over time and across geographic regions. In addition, diesel fuel may

become subject to CO2 emission charges in some jurisdictions. Quantifying the

overall effect, the blue lines in Figure 4 show that a 20% increase in the fuel

cost of diesel buses will decrease the critical utilization rate by about 12-18%,

depending on the route. The corresponding impact on the efficient share of

electric buses would be more pronounced on Route B, and result in an increase

of k∗1 by about 10%.

Any increases in the cost of capital should intuitively weaken the competitive

position of electric buses, that is h∗ to increase and k∗1 to decrease. While the

LCPM of both drivetrains will increase, a larger cost of capital should have a

more pronounced effect on the more capital-intensive drivetrain, i.e., electric

vehicles. A similar observation emerges in connection with capital-intensive

renewable energy in comparison to fossil fuel power plants [35]. The yellow

lines in Figure 4 confirm this intuition, though the changes in the dependent
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Figure 4: Sensitivity analysis. a,b,c,d This figure shows the sensitivity of the critical

utilization rate on (a) Route A and (b) Route B, as well as the sensitivity of the efficient

share of electric buses on (c) Route A and (d) Route B to four different input variables

variables turn out to be relatively minor on both routes, and for both variables.

Specifically, the critical utilization rate increases almost linearly at the modest

rate of 3% for every 10% increase in the cost of capital.

Recent advances in lithium-ion battery technology have significantly lowered

the price of lithium-ion battery packs, which, in turn, comprise a significant

share of the net acquisition cost of battery electric buses [36]. Numerous recent
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studies point to sustained cost reductions in the future along the trajectory of

a classic learning curve [37, 6, 38]. An additional development that is forecast

to lower the net acquisition cost of battery electric buses is the emergence of a

market for ‘second-life’ battery applications [39, 40], once the degradation of the

battery packs makes them no longer suitable for transportation services. In the

context of the model presented here this would increase the salvage value with

a corresponding decrease in the net acquisition cost of electric buses. The green

lines in Figure 4 confirm that the critical utilization rate is highly sensitive to

increases in the net acquisition cost of electric buses. On either route, a 10%

change in the net acquisition cost results in approximately a 30% change in h∗.

Naturally, the efficient share of electric vehicles is decreasing in the net ac-

quisition cost of electric vehicles. These decreases occur at a lower rate on

Route A (Figure 4c) compared to Route B (Figure 4d), which exhibits a larger

difference in the hourly operating costs of the two drivetrains. From a pub-

lic policy perspective, the finding is that without the current $100,000 capital

subsidy made available to electric buses by the California Air Resource Board,

the efficient share of electric vehicles in the Marguerite fleet would decrease by

about 25%. Yet, if the net acquisition cost of electric vehicles were to drop by

40%, then an all electric bus fleet would be cost-minimizing on both routes.

Based on current price trajectories for lithium-ion battery packs [37, 41] and

conservatively estimating that such packs constitute 30% of the net acquisition

cost, this scenario should emerge no later than the year 2025.

5. Conclusions

In many industrialized countries, the efforts to decarbonize the economy are

increasingly focused on the transportation sector. This paper has developed

a time-driven life-cycle cost model for mobility services. The model yields a

ranking of alternative drivetrains with different environmental and economic

characteristics in terms of their life-cycle cost for any given duty cycle. The

critical utilization rate that equates any two drivetrains in terms of their life-
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cycle cost is shown to also provide the optimization criterion for the efficient

mix of the competing drivetrains in a vehicle fleet. In sum, the developed

levelized cost model provides a unified framework for examining the (i) cost

competitiveness of individual vehicles, (ii) optimal mix of alternative drivetrains

in a fleet, (iii) efficient dispatch of alternative drivetrains, and (iv) effect of

the characteristics of multi-dimensional duty cycles on the composition of cost-

efficient vehicle fleets.

The LCXM metric is calibrated and applied in the context of an urban bus

service as a case in point, where the output measure is either miles traveled

or passenger-miles delivered. The findings of this empirical analysis still point

to a significant role for diesel buses during peak demand across all types of

routes. The critical utilization quantity is highly dependent on route-specific

characteristics, and so is the economically efficient proportion electric drivetrains

within a fleet that must meet a given load profile. At the same time, the optimal

share of diesel buses within a fleet is forecast to diminish substantially in the

next five years, provided recent improvements in electric drivetrains continue.

Regarding future work, it will be instructive to extend and apply the frame-

work to a broader array of drivetrain technologies, including hydrogen fuel cells

and biofuels. The framework is also applicable to a range of transportation

modes, including passenger- and cargo transports by road, water and air. In the

context of passenger road vehicles, the recent advances in mobility-as-a-service

suggest that the traditional ownership model will increasingly be replaced by

fleet ownership. This trend and the wider adoption of clean energy vehicles are

likely to reinforce each other on account of higher utilization rates associated

with vehicle sharing and the comparatively lower operating costs of clean energy

vehicles.
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6. Appendix

List of Symbols and Acronyms

Variable Unit Description

α % Corporate income tax rate

∆ – Tax factor

γ – Discount factor

λ % Share of acquisition cost as salvage value

θ – Description of duty cycle

a(θ) miles/hour Average velocity

bi(h|θ) passengers or tons Passengers or mass transported in year i

c(h|θ) $/X-mile Levelized acquisition cost

CFLo
i $ Annual pre-tax cash flow in year i

dt – Depreciation Schedule

D(k) hours Duration that ≥ k vehicles must operate

f(h|θ) $/X-mile Levelized fixed cost

Fi(θ $/year Fixed operating cost in year i

H(ki) hours Daily operating hours of a drivetrain i

hi hours Hours of operation in year i
−→
h hours Usage profile

Ii $/year Taxable income in year i

k – Number of vehicles

L(t) in k Load profile per hour t

LCM $/mile Levelized cost per mile

LCOE $/kWh Levelized cost of electricity

LCPM $/passenger-mile Levelized cost per passenger-mile

LCXM $/X-mile Levelized cost per X-mile

kWh – Kilowatt hour

p $/X-mile Revenue attained per X-mile

r % Interest rate

T years Useful lifetime of a given vehicle

TCO $ Total cost of ownership

v $ Acquisition cost of the vehicle

wi(h|θ) $/year Variable operating cost in year i

w(h|θ) $/X-mile Levelized variable operating cost

Xi(
−→
h |θ) X-mile Output measure in year i

Y (
−→
h |θ) X-miles Levelization factor
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Details of the Economic Model

We first complete the description of the model and then validate the formal

claims in the main text. The tax factor, ∆, depends on both the applicable

income tax rate, denoted by α, as well as the allowable depreciation schedule

for tax purposes. That schedule is denoted by {dt}Tt=1, such that dt ≥ 0 and∑
t dt = 1, and determines how the initial investment is amortized for tax

purposes over time. The overall effect of income taxes can be summarized by:

∆ =

1− α ·

[
T∑

t=0

dt · γt
]

1− α
− λ · γT . (4)

In case α = 0, as applicable for a non-profit organization like Stanford Univer-

sity, the tax factor reduces to ∆ = 1− λ · γT .

Proof of Claim 1. Suppose every X-mile attains a revenue of p. For a given

duty cycle θ and usage profile ~h, we demonstrate that the investment breaks

even whenever p = LCXM(~h|θ). In year i, the operating revenue is given by:

Revi(hi) = Xi(hi|θ) · p = bi(hi|θ) · a(θ) · hi · p.

The overall pre-tax cash flow in year i will be represented by CFLo
i . It comprises

operating revenues and operating costs:

CFLo
i (hi|θ) = Xi(hi|θ) · p− wi(hi|θ)− Fi(hi|θ).

The firm’s taxable income in year i is given by:

Ii(hi|θ) = Xi(hi|θ) · p− wi(hi|θ)− Fi(hi|θ)− v · di.

The present value of all after-tax cash flows is therefore given by:

T∑
i=1

[CFLo
i (hi|θ)− α · Ii(hi|θ)] · γi − v + (1− α) · λ · v · γT . (5)

Direct substitution shows that the expression in (5) is equal to zero if and only

if:

(1− α)

T∑
i=1

CFLo
i (hi|θ) · γi + α ·

T∑
i=1

v · di · γi + (1− α) · λ · v · γT = 0. (6)
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Dividing by (1 − α) and recalling the definition ∆, the equality in (6) reduces

to:
T∑

i=1

[Xi(hi|θ) · p− wi(hi|θ)− Fi(hi|θ)]γi = v ·∆. (7)

By definition Y (~h|θ) =
T∑

i=1

Xi(hi|θ) · γi and therefore (7) holds if and only if

p = LCXM(~h|θ). 2

Proof of Claim 2. Given the load profile, L(·), the required total annual

number of operating hours becomes:

ĥ = 365 ·
∫ 24

0

L(t) dt.

For any feasible fleet composition, i.e., (k1, k2) such that k2 ≥ k+− k1, the fleet

operator will rely to the extent possible on the drivetrain with the lower unit

operating cost. Specifically, the number of daily operating hours of drivetrain 1

will be:

H(k1) ≡
∫ 24

0

min{L(t), k1} dt.

The overall cost minimization problem then is to choose k1 so as to minimize

the break-even price p per X-mile required to cover the fleet operator’s total life-

cycle cost in meeting the daily load profile L(·). In particular, p must satisfy

the inequality:

T∑
i=1

p ·X(ĥ) · γi ≥ v1 · k1 + v2 · (k+ − k2)

+

T∑
i=1

[
365 · (w1 ·H(k1) + w2 · (ĥ−H(k1))

+ F1 · k1 + F2 · (k+ − k1) + α · Ii(ĥ, k1, p)
]
· γi (8)

− γT · (1− α) · λ · (v1 · k1 + v2 · (k+ − k2)).

Here Ii(ĥ, k1, p) denotes the taxable income in year i, that is:

Ii(ĥ, k1, p) ≡ p ·X(ĥ)− 365[w1 ·H(k1) + w2 · (ĥ−H(k2))]

− F1 · k1 − F2 · (k+ − k1)− [v1 · k1 + v2 · (k+ − k1)] · di.
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Recalling the definition of ∆ and collecting terms, the above inequality reduces

to:

p ≥ 1
T∑

i=1

X(ĥ) · γi

[
v1 ·∆ · k1 + v2 ·∆ · (k+ − k1)

+

T∑
i=1

[
365 · (w1 ·H(k1) + w2 · (ĥ−H(k1)) (9)

+ F1 · k1 + F2 · (k+ − k1)
]
· γi
]
.

To minimize p, we differentiate the right-hand side of (9) with respect to k1,

noting that

H ′(k1) =

∫
{t∈[0,24]|L(t)≥k1}

dt ≡ D(k1).

This derivative is given by:

1
T∑

i=1

X(ĥ) · γi

[
v1·∆+

T∑
i=1

[w1·365·D(k1)+F1]·γi−v2·∆−
T∑

i=1

[w2·365·D(k1)+F2]·γi
]
.

With the duty cycle θ held fixed, we simplify the notation for the levelized cost

of passenger miles by suppressing the dependence on θ. Also, on the domain

of utilization profiles that are constant across years, i.e., hi = h, we write

LCXM(h) instead of LCXM(h, ..., h) . Recalling the definition of the LCXM,

the last expression for the derivative of the right-hand side of (9) is proportional

to:

LCXM1(365 ·D(k1))− LCXM2(365 ·D(k1)). (10)

For a cost minimum, k1 must be chosen so that the derivative expression in

(10) is zero, which implies k1 = k∗1 , since k∗1 is such that 365 · D(k∗1) = h∗

and LCXM1(h∗) = LCXM2(h∗). Furthermore, since w2 > w1 and D(·) is

decreasing in k1, the objective function on the right hand-side of (9) is convex

in k1. Thus the value of k1 that satisfies the first-order condition corresponding

to (10) also yields the global cost minimum. 2

We observe that the levelized cost of the optimized fleet can be expressed as

a convex combination of the two component LCXM, with the respective weights
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given by the respective operating hours of the two drivetrains. For simplicity,

suppose that bi(hi) = b. Referring back to (9), it is then straightforward to

verify that the LCXM of the optimized fleet is equal to:

LCXM(365 · ĥ) =
365 ·H(k∗1)

ĥ
· LCXM1(365 ·H(k∗1))

+ (1− 365 ·H(k∗1)

ĥ
) · LCXM2(365 · (ĥ−H(k∗1))). (11)

Proof of Claim 3. The proof mirrors that of Claim 2. The total number

of vehicles acquired now becomes k+ given by the maximum value across all

Lj(·). With regard to the expression in (8), the only change is that the variable

operating costs now become:

T∑
i=1

[w1 ·
365∑
j=1

Hj(k1) + w2 ·
365∑
j=1

(ĥj −Hj(k1))] · γi,

where

ĥj =

∫ 24

0

Lj(t) dt and Hj(k1) ≡
∫ 24

0

min{Lj(t), k1} dt.

The claim then follows by proceeding exactly as in the preceding proof. 2

Usage and Cost Data

The data on input usage and cost items are furnished by various information

systems at Stanford University related to energy- and fleet management. Table 2

provides the general specifications for the two types of buses considered in our

analysis.

Table 2: General specifications for the examined buses.

Specification Diesel Electric

Make Gillig MA BYD K9 Electric Bus

Vintage (year & number) 2003 (8) 2013 (1), 2014 (10), 2017 (18)

Gross Vehicle Weight [lbs] 39,600 40,786

Length [ft] 35.00 35.80

Passenger Capacity 32 34

Drivetrain Cummins ISB 5.9L I6; AC synchronous motor; 80 kW,

235hp; 460 lb-ft torque 350 kWh iron-phosphate battery
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Variable and Fixed Costs

Stanford Transportation provided detailed operational cost data. Variable op-

erating and fixed operating costs, as defined in Section 2 of the manuscript,

are aggregate cost categories provided in Table 3. For each cost category, its

applicability is indicated depending on the drivetrain. This table also shows our

classification in terms of variable versus fixed operating costs. This classification

was confirmed by the analysts at Stanford Transportation.

Table 4 provides average values for route-invariant cost parameters for both

diesel and electric buses. The acquisition cost shown there for each bus type

reflects the most recent purchase price. If the purchase occurred before the

year 2019, we adjusted the price for inflation with an average annual inflation

rate of 2.00%. The capital incentive for electric buses is a subsidy granted

by the California Air Resources Board under the Hybrid and Zero-Emission

Truck and Bus Voucher Incentive Program [34]. The salvage value for each

drivetrain is based on an estimate provided by Stanford. To assess the fixed

operating costs of a bus, we took the drivetrain-specific average across transit

buses in the Marguerite fleet of annual operations and maintenance costs for

the years 2017–2019. The annual fixed cost of each bus comprises the sum of

registration fees, insurance cost, and components of maintenance costs that are

usage-independent, as shown in Table 3. Further, the annual warranty payment

for the battery is considered a fixed cost. The labor cost per hour includes

the cost of the driver per hour of operation, composed of salary, benefits, and

overhead. Our estimate of the fuel costs is based on the average of diesel prices

per gallon paid for the Marguerite fleet in 2019.

The cost of electricity charging for electric buses deserves particular atten-

tion. Stanford purchases electricity from a variety of sources each entailing a

specific set of fixed, demand and volumetric charges. The total of these electric-

ity costs in 2019 normalized by the total volume of electricity delivered (kWh)

amounts to ¢9.20/kWh, which represents the average cost of electricity to the

university on a volumetric basis. This cost figure is charged to all administra-

tive units within the university for the consumption of electricity. In addition,
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Table 3: Variable and fixed cost categories per drivetrain.

Cost category Diesel Electric Cost type

HVAC yes yes fixed

Air Intake System yes no fixed

Brakes yes yes variable

Cab-Sheet Metal yes yes fixed

Charging System yes yes fixed

Clean-up/ Detailing yes yes fixed

Cooling System yes yes variable

Cranking System yes yes variable

Diesel Exhaust Fluid yes no variable

Tires yes yes variable

Dry Freight Body yes yes fixed

Electric Prop. System no yes variable

Electrical Access. yes yes fixed

Exhaust System yes no variable

Expendables yes yes variable

Frame yes yes fixed

Front Axle-Susp-Brgs yes yes variable

Fuel System yes no variable

General Accessories yes yes variable

Horn-mounting yes yes fixed

Ignition System yes no fixed

Instruments yes yes fixed

Liftgate yes yes fixed

Lighting System yes yes fixed

Lines yes yes fixed

Main Auto Trans yes no variable

Mounted Equip Repair yes yes fixed

Oil yes no variable

Power Plant yes yes fixed

Radio yes yes fixed

Rear Axle-Susp-Brgs yes yes variable

Rear Door yes yes fixed

Refrig-Mechanical yes yes variable

Satellite/Veh Comm yes yes fixed

Special yes yes fixed

Steering yes yes variable

Suppl Info Devices yes yes fixed

Towing yes yes variable

Trim yes yes fixed

Valves yes yes variable

Wash yes no fixed

Wheels-Rims-Hubs yes yes variable
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Table 4: Route-invariant cost parameters (in 2019 $US).

Diesel Electric

Acquisition cost $430,757 $750,000

Capital incentive – $100,000

Salvage value $10,000 $38,750

Fixed cost per year $5,054 $5,913

Labor cost per hour $71.00 $71.00

Fueling cost per gallon $3.40 –

Charging cost per kWh – ¢9.20

Useful lifetime 12 years 12 years

Cost of capital 5.00% 5.00%

each unit is charged a markup for various overhead cost items, resulting in a

total of ¢15.20/kWh [42]. For the purpose of determining the life-cycle cost

of electric buses, we only impute the normalized volumetric rate, and exclude

the university-wide overhead charge, as this is the effective incremental cost per

kWh to the university.

A time-invariant volumetric charge for electricity seems appropriate given

the configuration of Stanford’s energy system. While the campus as a whole

is subject to demand charges and time-of-use volumetric charges, these time-

dependent costs are essentially not relevant to the various operating units, in-

cluding the bus depot, due to the dominance of the university’s central energy

facility. The facility manages the district heating and cooling for the entire

campus and is, therefore, by far the largest single source of electricity demand,

dwarfing, in particular, the incremental load associated with bus charging. The

central energy facility has effectively the ability to ramp the university’s demand

for power in response to time-based price signals, thus enabling the campus

to minimize both demand and time-of-use charges [14]. We note that time-

invariant volumetric charges for electric buses have also been imputed in other

settings applicable to university campuses and municipal bus fleets [43].

The variable cost components include certain maintenance and energy costs,

whereby the latter is the product of the route-specific energy consumption and
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the fueling or charging rate provided in Table 4. Our dataset includes the

variable maintenance costs and energy consumption per transit bus in the Mar-

guerite fleet for the years 2017–2019 on the specific days these costs were in-

curred. These variable cost components vary by route depending on the number

of stops per mile and the collection of routes served by a bus throughout the

year. The number of buses assigned to each route was assumed to be constant

across the years.

Table 5 provides average values for the variable cost for both drivetrains by

route. Table 3 shows which categories of the maintenance cost are considered to

be usage-dependent for each drivetrain. For Route A, for instance, the average

variable maintenance cost is calculated by taking the average across buses for

which the annual average number of bus stops per mile is equal to that of Route

A.

Table 5: Route-specific cost parameters (in 2019 $US).

Route A Route B Average

Diesel

Variable maintenance cost per hour $5.09 $8.37 $7.04

Energy consumption per hour (in gallons) 6.23 2.48 4.44

Fueling cost per hour $21.16 $8.42 $15.07

Variable cost per hour $26.25 $16.79 $22.11

Electric

Variable maintenance cost per hour $1.18 $4.46 $3.13

Energy consumption per hour (in kWh) 9.13 3.34 9.01

Charging cost per hour $0.84 $0.31 $0.83

Variable cost per hour $2.02 $4.77 $3.96

Route-specific energy consumption for electric and diesel drivetrains are cal-

culated according to different methods which reflect differences in the availabil-

ity of data. For electric buses, we rely on daily total net energy consumption,

total time in service, and total distance traveled as provided by the battery

management system for individual buses. Net energy consumption in this con-

text refers to the total energy provided to the bus from the battery minus the
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energy generated via regenerative braking. We gathered the three categories of

the battery management system data for electric transit buses that operated on

Route A and B most frequently in 2019. To account for daily and seasonal vari-

ation, we attained for each bus a complete battery management system record

for a randomly selected day in each month between January–August 2019. This

produced 24 records (3 bus readings per month for 8 months) per route. The

figures shown in Table 5 for electric buses represent the route-specific average of

the 24 measures. The time component of this measure accounts for the actual

time a bus was servicing a route. This includes in-service idling but not mid-

day lulls when the bus was not in service. As a point of reference, the energy

consumption per hour presented in Table 5 corresponds to a power consumption

of 1.41 kWh/mi and 1.11 kWh/mi for Routes A and B, respectively.

For diesel buses, we calculate energy consumption per bus by dividing the to-

tal volume (in gallons) dispensed during each refueling event to a specific bus by

the total number of in-service hours of the bus within the time interval since the

last refueling event for all refueling events recorded in 2019. The corresponding

set of bus stops per mile for each bus is calculated based on the duty cycles per-

formed during the same in-service time intervals. The figures in Table 5 result

from taking the mean of the calculated per-bus energy consumption measures

corresponding to those buses that exhibited stops per mile measures similar to

Route A or Route B, windsorized at the 5.00% level. Since the refueling data

includes the entire year 2019, the average consumption values account for varia-

tions across days, seasons, and vehicles. For reference, the energy consumption

per hours given in Table 5 correspond to a fuel economy of 5.26 miles per gallon

and 2.61 miles per gallon for Routes A and B, respectively. These values are

relatively low because they account for fuel consumed during in-service idling

and unplanned maintenance that require idling for troubleshooting.

Route Information

Route data for the Stanford Marguerite transit bus system examined in Sec-

tion 3, including system map and bus stop locations, is found at the Stanford
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Transportation website. Route information, including the number of bus stops

per mile, the average velocity, average number of passengers per hour, and the

average number of passenger-miles per passenger is provided in Table 6. Note

that actual route names found on the Stanford Transportation site have been

anonymized in an effort to maintain a basic level of data security and privacy.

Table 6: Stanford Transportation transit bus system route data.

Route Stops/mile Velocity [mph] Passenger/hour Passenger-mile/passenger

A 1.11 7.44 23 1.00

B 2.67 3.01 40 0.70

C 1.35 8.54 19 1.20

D 0.80 21.21 20 2.55

E 1.21 10.82 22 1.50

F 1.21 8.89 14 3.00

G 1.67 7.20 55 1.10

H 1.96 7.89 24 2.50

I 2.50 10.91 50 1.20

J 2.67 8.18 103 1.00

K 1.67 6.55 38 1.20

L 1.74 7.89 24 2.80

M 2.50 8.00 81 1.20

N 2.00 8.00 31 1.20

O 2.70 8.21 15 1.20

Table 7 provides the main route characteristics for Route A and B, as well

as the simple average for these parameters across all routes in the system. The

number of bus stops per mile is calculated by dividing the total route distance by

the number of bus stops. Finally, average velocity is determined by dividing the

total route distance by the expected completion time as provided by Stanford

Transportation.

In Table 7, the average number of passengers represents the number of pas-

sengers transported across the full distance of a route. This value is the average

number of passengers per hour multiplied with the average passenger-miles per

passenger and dividing this product by the average velocity. The number of

passengers per hour, in turn, is determined by dividing the annual number

of passengers that traveled a particular route by the annual total number of

hours that the route was serviced. The average passenger-miles per passenger

is estimated due to a lack of detailed on-boarding and off-boarding events per
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passenger as the expected distance in miles that the average passenger would

travel on a given route. This figure is defined as the average distance between

the two most “popular” bus stops on a route, i.e., the bus stops on a route

that have the highest total number of passengers boarding over the course of a

year. Since bus routes are loops that begin and end at the same location, the

average distance can be conceptualized as the average length of the two arcs

that connect two points on a circle.

Table 7: Route A, Route B and Marguerite average data.

Route A Route B Average

Number of bus stops per mile 1.11 2.67 1.89

Average velocity (in miles per hour) 7.40 3.01 8.70

Average number of passengers 3.15 9.44 6.92

Marguerite average utilization (in hours) 1,434 1,453 1,607

For the average utilization, we first calculate the operating hours of each

bus in 2019 as the product of the total number of loops per route that a bus

accumulated in 2019 with the expected completion time per route. Since we

only have data on bus-route assignments for the year 2019, we calculate the

operating hours of each bus in 2017 and 2018 by scaling the respective value

for 2019 with the total miles that a bus traveled 2017 and 2018. The average

utilization per route shown in Table 7 is calculated as follows: for Route B, for

instance, one takes the average of all buses that have an average number of bus

stops per mile equal to that of Route B. For the system average, the average

utilization is the average across all transit buses.

The two routes A and B yield extreme findings for the range of routes op-

erated by Marguerite, because they entail the highest and lowest average fuel

consumption per hour observed for diesel buses in the data set. Other routes of

the system entail values in between, with the system average amounting to 4.44

gallons per hour. This can largely be attributed to the observation that more

bus stops per mile reduce the average miles per hour traveled on a route. Route

A exhibits one of the highest values for average velocity, while the opposite holds
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for Route B. In contrast to the relatively small energy cost of electric buses, the

fuel cost for diesel buses becomes the dominant factor in determining the critical

utilization rate and, by implication, the cost-minimizing composition of the bus

fleet (see Figure 4).
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